Opcrating
System Basics

1.1

An operating system is an integrated set of programs that acts as an intermediary
between the user and computer hardware. The primary goal of an operating systems
is to make the computer system convenient to use in an efficient manner. A

secondary goal is to manage the resources of a computer system.

In this chapter, we will learn about operating systems, its need, its functions, and its

types.

What is an Operating System ?

An operating system is an integrated set of specialised programs that are used to

manage over all resources of and operations of the computer. It is specialised

software that controls and monitors the execution of all other programs that reside
4

Inthe computer, including application programs and other system software. Itis the

interface between the user and computer as shown in fig. 1.1

[1]

(% scanned with OKEN Scanner

FIGURE 1.1

A simple way of defining the operating system can be :

An operating system is a program that acts as an interface between the use
and the computer hardware and controls and manages the overall resource
of Computer system. '

A computer system has many resources (hardware and software) that may b
required to solve a problem.

According to this definition, the two primary objectiv_es, or gozls of an operatinc
system are :

1. Making a computer system convenient to use in an efficient manner

The operating systems hides the details of the hardware resources from the
users and provides the users with a convenient interface for using the computer
system. It acts as an intermediary between the hardware and its users and
making it earsier for the users to access and use other resouces.

As shown in figure 1.1, the hardware resources are surrounded by the operating
system layer, which in turn is surrounded by a layer of other system software
(such as assemblers, compilers, interpreters, etc.) and application softwares
(suh as Word processors, spread sheets, Accounting software, etc.). Finally,
the users view the computer system interms of the user interfaces provided

by the operating systems.

The efficient operation of the computer system is particularly important for
large, shared multiuser systems. These systems are very expensive, so it is

desirable to make them as efficient as possible.
(2]

(% scanned with OKEN Scanner

2. Managing the resources of a Computer System

This objective involves performing such tasks as keeping .track of who is
using which resource, granting resource requests, accounting for resource
usage and mediating conflicting requests from different programs and usgrs. o
The efficient and fair sharing of resources among users and/or programs IS @

key goal of most operating systems.

1.1 The Operating System as an Extended Machine

An average programmer probably does not want to get too initmately involved with
the programming of device like floppy disks, hard disks efc. .lnstead, what the
programmer wants is a simple, high-level abstraction to deal with. In the cas? of
disks, a typical abstraction would be that the disk contains a collection of.named files.
Each file can be opened for reading or writing, then read or written, and finally closed.

The program that hides the truth about the hardware from the programmer and
presents a nice, simple view of named files that can be read and written is, of course,
the operating system: Just as the operating system shields the programmer from
the disk hardware and presents a simple file-oriented interface. Therefore, the
abstraction offered by the operating system is simpler and easier 1o use than that
offered by the underlying hardware.

In this view, the function of the operating system is to present the user with the

equivalent of an extended machine or virtual machine that is easier to program
than the underlying hardware.'

Figure 1.1 shows the logical architecture of computer system. The computer hardware
resoures are surrounded by the operating system layer which in turn is surrounded
by a layer of other system softwares such as compilers, editors, assemblers, loaders
etc. and by a set of application programs such data processihg appiications,

entertainment and education applications etc. Finally, the end users view the
computer system in terms of the user interfaces.
1 A

1.1.2 The Operating System as a Resource Manager

The job-of an operating system is to provide an orderly and controlled allocation of
the processors, memories, and I/0 devices among the various programs competing

for th ing i
em. The resource sharing includes sharing resources in two ways in time

(3]

(% scanned with OKEN Scanner

and in space. Time management includes allocation of CPU, printer and Ot

ith the me
resources to various programs and space management deals wi m

allocation to multiple programs. .

In addition, users often need to share not only hardware, but information (like fj
database etc.) as well. Operating system keep track of who is using which resow
to grant resource requests, to account for usage, and to mediate conflicting reque

from different programs and users..

For example, in a multiuser networked environmént, imagine what would happe
three programs running on some computer all tried to print their output simultaneoy
on the same printer. The first féw lines of printout might be from program 1, the n¢
few from program 2, then some from program 3, and so forth. The result would |
chaos. The operating system can bring order to the potential chaos by buffering;
the output destined for the printer on the disk. When one program is__ﬁnished, i
operating system then copy its output from the disk file where it has’t;een stored
the printer, while at the same time the other prograim can continue generating mo

output (not to the printer yet). As Resource Manager its basic functions are shou
in figure 1.2.

File Management

Device Management

(Memory Management I)

[

 —

- .

Operating
System

Processor Management

L Security and Protection

-

FIGURE 1.2 [Rgle of an Operating System]

[4.

(% scanned with OKEN Scanner

1.2 FUNCTIONS OF OPERAT. ING SYSTEM

/
Functions of Operating Systems are :

4., Memory (Storage) Management

: (a) Itkeeps tracks of primary memory i.e. what part of it are in use by whom'
what part are not in use etc.

(b) In multiprogramming it decides which process will get memory when

and how much.
Allocates the memory when the process or program request it to do so.

(d) Declaims (deallocate) the memory when the process no longer needs it
or has been terminated.
2. Processor Management

(a) Keep tracks of processor and status of process. Program that does this

is called traffic controller.
(b) In multiprogramming it decides which process gets the processor when
& how much time. This function is called Process Scheduling.

(c) Allocate the processor (CPU) to a process.

(d) Deallocate processor when processor is no longer required.

3. Device Management |
(a) Keeps tracks of all devices (peripherals). This is also typically called the

I/O controller.
(b) . Decides which process gets the device when & for how much time.

(c) Allocate the device in the efficient way.
(d) Deallocate devices. |
4. File Management
(a) It keeps track of information, its location, uses, status etc. The collective

facilities are often known as file system.
(b) Decides who gets the resources. |
(c) Allocates the resources.

(d) Deallocates the resources.

(5]

(% scanned with OKEN Scanner

10.

11.

12.

Secondary Storage Management

Main memory as a limited size and it is volatile i.e. it looses its contentg
soon as power turns off. The operating system performs following functioy
regard to secondary storage management.

(@) Free space management i.e., manages free space on the secong,
storage devices by reclaiming memory from used objects.

(b) Allocation of storage space when new files have to be written.

(¢) Scheduling the requests for memory access i.e. Disk Scheduling.
(d) Creation and Deletion of files.

Security and protection

By means of passwords & similar other techniques, preventing unauthoriz
access to programs & data.

Protection involves ensuring that all access to system resources is controlle,
Network Management

An operating system works as a network resource manager when multipl
computers are in a network or in a distributed architecture.

Control over system performance
Recording delays between request for a service & response from the system

Job accounting

Keeping track of time & resources used by various jobs and/or users.
Interactior: v ith the operators

The interaction takes place via the console of the computer in the form of
instructions from the Operator acknowledging the same, action thereon, as

well as informing the operation by means of a display screen of works & problem
encountered.

Error-detecting aids

Production of dumps, traces, error messages and other debugging and error-
detecting aids.

Coordination between other softwares and users

Coordination and assignment of compilers, interpretiers, assemblers and other
software to the various users of the computer systems.

ral

(% scanned with OKEN Scanner

1.3 Services of Operating System

/
~ commonly used services of operating systems are :

/’

1.

Program execution
The system must be able to load a program into memory and to run it. The
program must be able to end its execution, either normally or abnormally

(indicating error).
File-System manipulation
User can directly create, delete, rename, copy etc. files by using the appropriate

commands as specified by the operating system.

/O Opeartions
A running program may require I/0. For specific devices, special functions

may be desired (such as rewind a tape drive, or blank the screen on a CRT).
Users usually cannot control I/O devices directly. Therefore, the operating

system provides some means to do 1/O.

Communications

Operating Systems implements the comm
shared memory or by the technique of me
of information are moved between processes.

unications between processes via
ssage passing, in which packets

Resource allocation

In multiuser or multiprogramming,
will get the resource, when and how much time.

operating system decides which process

Accounting
Sometime we want to keep track of which users use,
kinds of computer resources. Operating system provid

how much and what
es all details.

Security and protection
For security, Login/Logout commands are used in multiuser environment for

logging into or logging out of the system.
Protection involves ensuring that all access to system resources is controlled.

Error Detection

IErrors may occur in the CPU, In memory, in I/O devices or in the user pr ogram.
or each type of error, the operating system should take the appropriate action

to :
énsure correct and consistent computing.

[7]

(% scanned with OKEN Scanner

1.4 Some Examples of Operating System

Some examples of operating systems are :

1. MS-DOS (Micro - Soft Disk Operation system)
DOS was introduced in 1981 & has undergone many upgrades. The lat
(1995) DOS version is 6.22 which has advanced memory & file managemg
“capabilites, as well as virus protection facilities. DOS is a single-user, sing
tasking O.S. . |

2. CP/M (Control Program for Micro Processors)
This OS is single user & meant for 8-bit micros.

3. Windows : Windows has two verison

° DOS With Windows &
° Windows NT

(a) DOS with Windows : It extends the capabilities of DOS by creating a
operational environment. Actually, itis not an independent O.S. & require:
DOS to run it. Its capabilities include multi-tasking, enhanced memory ¢
graphical user interface.

(b) Windows NT : Itis an OS by itself. It has get to gain adequate popularity
Its capabilities include multiprocessing, multitasking, networking flexibility

& graphical user interface. It has more memory. It is also a multiuse!
OS.

4. 0s/2

It was jointly developed by IBM & Microsoft Corportion. It requires at least the
Power of intel's 80386 processor. Its capabilities include multiasking, enhanced

memory, networking flexibility & graphical user interface.
5. Macintosh

The OS is (i : , ,

08 S is contained in two primary files known as system file and finder. The

f“;s. ptroc:dures. Include such tasks as formatting disk, copying files, erasing
€lC. & running application Programs. These files also manage the user

(8]
(% scanned with OKEN Scanner

interface, displaying menus and activating tasks that are chosen f
n from the

menus. Its main advantage is ease of use, quaility graphics, multitaski
- sking &

communication among programs.

6. UNIX

The programmes written on Unix OS are termed as portable. Unix OS can be

used on microcomputers, mini computers & is multi user, multi processing &
multi tasking OS.

The OS have very good networking .facilities & is very popular on

microcomputers called work stations.

Measuring System Performance

1.5

Following terms aré used to measure the efficiency of an operating systems and

the overall performances of a computer systems.

1. Throughput

Throughput is the amount of work that the system is able to do per unit time.

For example, if n processes aré completed in an interval of t seconds, then

the throughput is taken as n/t processes per second.

2. Turnaround time

Turnaround time is the interval from the time of submission of a job to the

system for processing to the time of completion of the job.

3. Response time
mission of a job to the system

duced by the

Response timeis the interval from the time of sub
for processing to the time the first response for the job is pro

“system. Response time is better measure as compared to turnarround time.

(9]

|

(% scanned with OKEN Scanner

1.6 Types of An Operating System (According to the number of user)

—

There are two types of O.S.

Single User Systems : In this kind of system the processor or a computey

does only one job at a time. That is at one point of time only one task can be

performed. » b\’/J
e —D VS

For Example : MS-DOS ' 2:5

The disadvantage of single user operating system is that CPU sits idle for

most of the time and is not fully utilized.

Multi User System : This type of system is used by more than one user as
shown in figure 1.3. It allows the interaction of one user with the other. It also

helps in executing more than one task at a particular time.

For Example : Unix and Windows NT.

User 1 User 2
— gr‘* I:D_f;

| [” g

Server I:D '

User 3

FIGURE 1.3

[10]

(% scanned with OKEN Scanner

1.6.1 Difference Between Single User & Multi User O.8S.

SINGLE USER (0S)

MULTI USER (0S)

/’

1.

Single person can use at atime

1. More than one user can use at

atime

—
o, Standalone

2. Many systems are connected

with one system

—

3. More securé

3. Less secure

4. No sharing of data

4. Sharing of data

L

B -Hé;e interactive - 2 5 tess Interactive
6. Simple 6. Complex
7. Cheap, 7. Costly .

Less functions

oo

8. More functions

9. Smallin size

9. Large in size

10. Examples are DOS, Windows

1.7 Historical evolution of Operating System

10. Examples are Windows NT, Unix

Operating systems have evolved through a number of distinct generations which

corresponds roughly to the decades.

1. The 1940's - First Generations

The earliest electronic digital computers had no operating systems. Machines

of the time were so primitive that programs were often entered one bit at time
o . .
n rows of mechanical switches (plug boards). The individual user was

res [i
ponsible for all machine set up and operation. Programming languages

were unknown. Operating systems were unheard of.

[11]

(% scanned with OKEN Scanner

2. The 1950's - Second Generation
By the early 1950's, the routine had improved somewhat with the intradquo
of punch cards. The General Motors Research Laboratories implementeq th
first operating systems in early 1950's for their IBM 701. Early Compmer;
could perform only one job at a time and the users often had to wait for lor,
time to complete their job. The operating system of the 50's generally ran gy,
job at a time. This system was named as batch processing systems.

\F” = |
%/ — Note : Main operaling system of this generation is Batch processing
system. !

3. The 1960's - Third Generation

In the year of 1960's, the operating system designers thought that the single
user batch processing system was inefficient because most of the time was
spent waiting for the slow I/O devices to complete their tasks. Thersfore.
operating system designers developed the concept of multiprogramming in
which several jobs are in main memory at once; a processor is switched from
jobto job as needed to keep several job advancing while keeping the peripheral
devices in use.

Another major feature in third-generation operating system was the technique
called spooling (simulteneous peripheral operations on line).

Another feature present in this generation was time-sharing technique.

N —h
e ——————— —_—— e ———— \
¢ == Note : Operating System of this generations are :

I
: ® Multiprogramming operating system ll
| ® Time sharing operating system |
| ® Multitasking operating system '

4. Fourth Generation and Present

With the development of LS| (Large Scale Integration) circuits, chips, operating
system entered in the system entered in the personal computer and the
workstation age. Microprocessor technology evolved to the point that it become

[12]

(% scanned with OKEN Scanner

1.8

g %_:'— e, —_—_—,——— N
=—| Notfe : Main Operating Systems of this generation are :

possible to build desktop computers as powerful as the mainframes of the
1970's. Two operating systems have dominated the personal computer
Ms-DOS, and UNIX.

In this generation, the distributed operating system were developed for
computers that could run tasks on several interconnected processors.

In the mid 1980's the network operating system was introduced for
connecting the computers in a local area network.

Today's operating systems provide the fundamental services to the users so
that the computer hardware can be accessed easily and the hardware
resources can be shared among different users. The multitasking operating
sytem such as UNIX and Windows, divide the job among multiple processes
in the form of threads. Also on single user system, the multitasking enables
the computer to perform multiple tasks at the same multi-threading.

Therefore, now-a-days we use the concept of multi-threading. We also use
the concept of Parallel Processing operating system.

e Distributed operating system
o Network operating system

e Parallel operating system

We will discuss all these operating systems in detail in artical Classification
of operating system.

CLASSIFICATION OF OPERATING SYSTEM

Operating system may be classified in the following categories :
(i) Early O.S. or Serial Processing O.S.

(i) Batch O.S.

(i) Interactive O.S.

(iv) Real Time O.S.

(Y) Multiprogramming O.S.

(13]

(% scanned with OKEN Scanner

-3 F
B i
FoA s

1.8.1

(vi) Timesharing O.S.

(vii) Multiprocessing O.S. 1.5
(viii) Multitasking O.S. '

(ix) Distributed O.S.

(xX) Network O.S.

Early O.S. or serial processing O.S. |

In serial processing operating system only one job resides in computer memoy,
and it remains there till it is executed. After complition of job, next job is entereq
serial fashion.

In this system, memory management is very simple because whole memo

_ . Iy space
IS allocated to the job or program as shown in figure 1.4

0.s.

Advantages
1.

. _
esource Management g very easy
2. |

Resource allocation is very easy
Disadvantages

1.

3. Waiting time of jobs are More

r4al

(% scanned with OKEN Scanner

1.8.2 Batch 0.S.

The users of batch Operating Syste
Each user prepares his job on an of

the computer operator.

The operator sorts jobs into b

m do not allow to interact the computer directly.
(-line device like punch cards and submits it to

atches with similar requirements and runs each batch
lete its output is sent back to the appropriate

hen the job is comp
e J tion system is to transfer control

on the |
user. In batch system, major task of opera I
automatically from one job to the next as shown in figure 1.5
Ff Batchr
Job 1
Job 2
Jobs & S Job 3
Jobn
Operating System
Hardware
FIGURE 1.5
Advantages

1.
2.

Resource Management and allocation is very easy.

Faster than serial processing.

|

Disadvantages

1.
2

3.
4.

Lack of interaction between the user and the job while job is executing.
Turnaround time is high. The delay between job submission and job completion
is called turnaround time. '

Utilisation of CPU is very poor. The CPU is often idle.

Difficult to provide the desired priority.

We know that the speed of I/O devices is much low as compared to fast processors.

It means that CPU often waits for an I/0. Here we will discuss some techniques

that overcome this problem.

[15]

(% scanned with OKEN Scanner

1.8.2.1 Ofﬂine Processing

In this we replace the slow card readers and line printer with magnetic tapes. Eamz
cards were directly brought to the system but in this, cards were first copieq
magnetic tape and when the tape is sufficiently full, it is submitted to the comput
Similarly, output was written to tape and the contents of tape would be printeq lat

as shown in figure 1.6

—
-
. Tape =l Tape
P Drive) Drive A
& ». N X
T
. ™
= . - 1
arg = o - Line
jisader ' Printer
CPU

FIGURE 1.6 [Offline Processing |

Toimplement off line operation (from card reader to magnetic tape and from magnetic
tape to printer), special hardware is designed or a small computer was dedicated to
the task of copying to or from tape. So the main advantage in offline is that it makes

a bridge between the fast processors and slow card readers.

1.8.2.2 Buffering

Buffering is that method in which input, output and CPU act simultaneously. In this
when CPU processes first record, the input buffer is instructed to accept the next
input immediately. Similarly, buffering can be used for an output device. In this, the
output is put onto a buffer until an output device can accept it.

Buffering increases the resource utilization but it can be difficult to code. The very
first problem with buffering is that the next 1/0 Operation can be started only when

first 1/O operation is finished. Interrputs are used to solve this problem.

[16]

(% scanned with OKEN Scanner

1.8.2.3 Spooling

SPOOLING stands for Simultaneous Peripheral Operation On Line. It is most
'sdphisticated form of buffering. In spooling the disk space is used as a very large -

buffer for reading, storing and output files.

In disk technology, rather than the cards being read from the card reader directly
into memory, and then the job being processed, cards are read directly from the
card reader onto the disk. The location of card images is recorded in a table kept by
the operating system. When a job is executed, the operating system satisfies its
requests for card-reader input by reading from the disk. Similarly, when the job
requests the printer to output a line, that line is copied into a system.buﬁer and is
written to the disk. When the job is completed, the output is actually printed. This

form of processing is called spooling as shown in fig. 1.7

A
Disk
A A
IO
oy Line
Reader = ——> Printer
CPU

FIGURE 1.7 [Spooling]
Thus, Spooling keeps busy both CPU and I/O devices at much high speeds.

The main difference between spooling and buffering is that spooling overlaps

the /0 of ajob with the computation of other job Wwhereas buffering overlaps the

I/O of a job with its own computatlon

~—————

[17]

(% scanned with OKEN Scanner

1.8.3 Interactive (Or on-line) O.S.

An interactive system provides on-line communication between the user ang

system. The user gives instructions to the operating system or to a program dirg,

and receives an immediate response. Usually, a keyboard is used to provide in,

and a monitor.is used to provide output. When the operating system finishes |

execution of one instruction (or command), it seeks the next instruction from
user's keyboard.
Applications of On-line 0.S

Systems are being developed and are already in use fora wide range of applicatior

in different types of industries discussed below:

1. Electricity and Gas Boards
By means of terminals situated in showroom it is possible to inform perspectiv

customers of the availability of the appliances in response to their enquiries

2. Banking
It is possible to infdrm bank customers of the status of their accounts ir
response to an enquiry by accessing rc;levant file using an online terminal.
3. Tour operators

Reservation offices accept telephone inquiries from travel agents regarding
the availability of holidays in respect of client's inquiries. By means of terminals,
the availability of the required holidays can be chécked and looked immediately.

4. Stock Exchanges

Terminals located in major stock exchanges through out the country and the

offices of participating brokerage firms enables the Sspeedy processing of share

dealings. -

[18]

(% scanned with OKEN Scanner

5. Stock Control
Terminals located in warehouse provide the means for automatic reordering
of stocks, updating of stock records, reserv_ations, follow up of outstanding

orders and the printing of picking list etc.

Advantages
1. Integration of clerical staff with the computer

Clerical staff can have access to information which they require for the efficient

performance of their jobs in dealing with customer inquiries and order

processing.
2. Elimination of tedious tasks
Routine clerical tasks are replaced by terminal operations providing a greater

degree of job interest, operating efficiency and job satisfaction.

3. Reduction in paper work
Volume of paper work generate by normal clerical system and batch processing
systemis relati\)ely high On line systems reduce the volume of print out required
for management report since the information can be displayed on terminal
screen on demand.
4. Improved accuracy
As terminal messages are checked accuracy before being transmitted to the
computer by data validation programs, thé quality of information in a system
increases as the input errors are reduced. Hence, information is more reliable.
5. File updating improved
Master filés are‘more easily updated by terminal keyboard with regard to

transaction data.

[19]

(% scanned with OKEN Scanner

6. Management information more readily available

Management information becomes more readily available by direct acy
facilities which enables managers to obtain a greater degree of contrg) toy

operations for which they are responsible.
7. Improved customer services

Improvements in the level of customers service can be expected in the,
sysiems concerned with appliances sales, banking systems and aceoy
inquiries.

8. Reduced data preparation cost

Online systém dispense with the need ﬁo convert human sensible data iy
machine sensible data there by eliminating punching and verifying operation

This saves time and the cost associated with such operations.

1.8.4 Real Time 0.8,

Real time system is defines as a data-processing System in which the time interval

to the online processing.

(% scanned with OKEN Scanner

The essential requirements of this method are :
.

1. Large main memory for software & OS requirements.
| 2. Large disk memory.

3. Stand by facilities to take care of such events as system failure.

4. Complex communication system.

5. Maintainence of audit trails as well as security of programs and data.

Examples of real time processing are :

1. Air traffic contral system.

Reservation systems used by hotels and car rental agencies

2
3. Process control systems as in nuclear reactor plants.
_4. Systems that provide up-to-the minute information on stock prices.
5. Systems that provide immediate updating of customer accounts in savings
banks.
Advantages

17" Response time is very less.
2 Better throughput

3~ Large memory
4. 24 hours service provider

5. Provide information up-to-minute
_Disfdvantages

1. Very costly
2. Large main memory and secondary storage required.
3. Comlex communication systems.

4. Stand by facilities required to take care of such events as systems failure.

[21]

(% scanned with OKEN Scanner

1.8.4.1 Difference between Batch O.S. & Real Time O.S.

REAL TIME PROCESSING
(Including online processing)
Random data input at random

BATCH PROCESSING

1. Data collected for defined period | 1.

i of time & processed in batches. time.
2. Most economical. 2. Costly
3. Simplest processing method. 3. Complex processing method
4. Requires sorting prior-to ‘4. No sorting required
. processing. Sevt] sef|vived - i
" 5. Itis measurement oriented.| é._;_Itwisfaction-orienteg

6. Information of master file is up-to- |.6. Information on master files
date only up to last updating run. |~ updated as events occur.

7. Files are online only during a 7. Files are permanently online.
processing run.

8.~ Magnetic tape as well as 8. -Only direct access device are

~ magnetic disk are used. ~ used like magnetic disk.

9. This_ mode of processing i.s; 9. lf_r his is used for railway
particularly used for updating reservation, airline reservation,)
payroll flk/e,i_s?ock.ledge.r, - banks, order entry,/inventory ~ _

- customerbilling, invoicing etc.) control, production) scheduly etc.,

10. Paper work is more/(All J 10..Minimum paper work.

transaction recorded on source
documents.) ‘

13 Output r i i Py o
% det;il_ sports are printed in }1./Most information is usually
displayed on terminals.

1.8.5 Multi programming 0.8.

The mismatch between the speed of Input/Output device and CPU leaves som?
resources of the computer system under-utilized. However, if the computer syste™
is working in the multiprogramming mode, better utilization ofthe available equipme

can be realized.

[22]

(% scanned with OKEN Scanner

Multiprogramming refers to keeping several programs in different parts of the main
‘memory at the same time as shown in figure 1.8 and executing them concurrently
by the CPUL. .

Operating System

Program A

Program B

Program C

Program D

FIGURE 1.8

The CPU switches from one program to -another almost instantaneously. Since the
operating speed of CPU is much faster than that of I/O opérations, the CPU can
allocate time to several programs instead of remaining idle wheh one is busy with I/
O operations. Hence, In multiprogramming system, when onebrogram is waiting

for I/O transfer, there is another program ready to use t_he CPU. A simple example
of multiprogramming is given‘in the figure1.9 =~ |

~ MAIN MEMORY
| : WRITING OUTPUT

— DATA SUPERVISOR

PROGRAM A

__’/ - PROGRAM B

v EXECUTION IN PROGRAM C'
\——/ PROGRESS (WAITING FOR CPU) -

SECONDARY DISK STORAGE CPU
FIGURE 1.9

(23]

(% scanned with OKEN Scanner

At the particular time instance shown in the figure, program A Is not utmzingt

CPU since it is busy in writing output data on to the disk. The CPU is being Usgy

execute program B which is also present in the main memory. Another preram(

residing in the main memory, is waiting for the CPU to become free.

In case of multiprogramming the various programs stored in the main memory, G

be in one of the following three stages :

1.

Running

CPU is being used by the program.

Ready

Waiting for CPU to be assigned to it.:

Blocked

Performing 1/0 Opeation.

Advantages of Multiprogramming -

1.

Increased Throughput

ystems hay
programs, € Schemes for Setting priorities for rotating

[24]
(% scanned with OKEN Scanner

4. Improved Primary : Storage Allocation

The greater the number of programs that primary storage can hold, the greater
the probability that the CPU will be able to execute at least one program while

waiting for I/O for the others.

Requirements or Disadvantages of Multiprogramming Systems

1. Large Main Memory

Large main memory is required to accomodate many user programs along

with operating system.
2. Memory Protection

Computers designed for multiprogramming must provide some type of memory
- protection mechanism to prevent a program in one memory partition, from
changing information or instruction of a program in another memory partition.

3. Proper Job Mix

The main memory should contain some CPU-bound programs and some I/o-
bound programs in its varioius partitions so that atleast one of the program
which does not need l/o is always available to the CPU for processing.

4. Program Status Preservation

In multiprogramming, a portion of one program is executed, then a segment of
another, and so on. Before a program is suspended and the control is passed
to another program, the values of all CPU registers should be stored in the
memory area of that program and then restored when the control is ultimately

returned to the first program. This is known as program status preservation.
5. CPU Scheduling

There will be situations which two or more programs will be in the ready state,
waiting for CPU to be allocated for execution. In such a case, the operating

system ust decide to which program should CPU be allocated.
(25]

(% scanned with OKEN Scanner

1.8.5.1 Difference between serial execution and Multz'prog;amm

Execution

Difference between s'erial (or sequential) execution and Multiprogramming eXeg,

is shown in figure 1.10

cpu lVo cPU /o CPU I/o CPU l/o
| |] | | L | 1 | |
| >« —
Program-1 Program-2
(A) Sequential Execution
>§§§>§S < Program-1
4——— Program-2
L1 l I I | ‘@‘— V0 processing
' [— CPU processing
(B) Multiprogramming Execution

FIGURE 1.10

figure 1.10 (a) shows that at'any time either the processor (CPU) is busy or 10
devnc.jes are active. Both are not active simultaneously. Figure 1.10(b) shows the
possible concurrent execution of two Programs. In this we see that when CPU sits

idle fo -1 duri ivity, it si
r Program-1 during 1/0 activity, it simply switches to CPU intensive phase of
the Program-2 or vice-versa. The n

resouce utilization.

1.8.6 Timesharing Operating Syst
em

(% scanned with OKEN Scanner

specific timex slice are all.c)cated to different user in rotation. Time-sharing system,
allocates a very short period of CPU time one-by-one to each user process,
beginning from the first user process and proceeding through the last one, and then
again beginning from the first one. This short period of time during which a user
process gets the attention of the CPU is known as a time slice, time slot, or
quantum, and is typically of the order of 10 to 100 millisecond. It appears to the
user that the computer is working for him exclusively, though the fact is that computer
serves him periodically. Thus time sharing may be viewed as a multi-use

multiprogramming technique. The time sharing process is shown in figure 1.11

MAIN MEMORY
TIME SHARING

TERMINAL 1 SUPERVISOR

USERT s \

| USER2
TERMINAL 2 \ S ik
USER 3 -

USER 2 , \ USER2
TERMINAL 3 . | Leens

USER 3 USERD AR

\ ' USERN
CPU

ONE LINE STORAGE

TERMINAL N
USERN

FIGURE 1.11

In case of time-sharing system the various programs can be in one of the following
three stages :

e Running : CPU is being used by the program.
2. Ready : Waiting for CPU to be assigned to it.

3. Blocked : Performing 1/O opeation.

[27]

(% scanned with OKEN Scanner

Requirements of Timesharing System

Requirements of Timesharing system are exactly same as we have dlscusseq1

multiprogramming system i.e.

1.
2.
3.
4.

5.

Large Main Memory

Memory Protection

Proper Job Mix

Program Status Preservation

CPU Scheduling

Advantages of Timesharing

1.

4.

Reduces CPU idle time : Time sharing significantly increases CPU utilization

by switching from one program to another in rapid succession.
Provides advantages of quick response.

Reduces the output of paper : If 5 manager can retrieve at any time the

specific information he needs from an online file, he does not need a bulky

report that contains mych of the file information.

Avoids duplication of software,

Disadvantages of Timesharing

;
2.

3.

Prqblem of data Communication,

Problem of reliability

[281]
(% scanned with OKEN Scanner

1.8.7 Multiprocessing

This technique consists of two or more CPUs connected to common peripherals.
Instruction from different programs may either be processed by different CPUs or
one, or more, processors may execute instructions from the same program
simultaneously. This technique can serve a purpose only in large computer

Installations, where same joos are too large for one CPU, or where a large number

of problems need to be solved simultaneously.

. MAIN '
cPU1 |« M oy [cpuz
7y A : I
v
Vo 1o
PROCESSOR [€ ' »| PROCESSOR
Vo 1o
UNITS : UNITS
FIGURE 1.12

Generally the multiple processors are used in two ways :

1. Symmetric Multiprocessor : In Symmetric multiprocessor, each processor
runs an identical copy of the operating system and these copies communicate
with one another when needed. Figure 1.13 shows fthe structure of Symmetric

Multiprocessor.

CPU1

CPU 2 & > CPU 3

FIGURE 1.13
[29]

A Uieee.
(% scanned with OKEN Scanner

2. Asymmetric Multiprocessor : In Asymmetric meltiprocessor., each Proceg
is assigned a special task. In this scheme there is a master processor ang
remaining processors known as slave processors are controlled F)y t'he May
Such scheme is called as master-slave relationship as shown in figure 1
Hence, it is the master who allocates the work to the slave processors

T
CPU 1
(Master)
CPU 2 CPU 3 CPU 4 CPU 5
(Slave) (Slave) (Slave) (Slave) .
FIGURE 1.14

Advantages of Multi processing -

1. Better throughput : It improves the performance of computer systems b
allowing parallel processing of segments of programs.

2. Better Reliability : It provides a built-in backup. If one of the CPUs break
down, the other CPUs automatically takes over the complete workload unt
repairs are made. Hence, Multiprocessor system have better reliability.

3. Better utilization of resouce : In additions to the CPUs, it also facilitates
more eﬁicient utilization of all the other devices of the computer system.

Saving Cost : Suct] 'system shares the memory,

buses, clock etc. S0 it reduces
the cost of the system.

Disadvantages of Multi processing

1. Alarge main memory is required.

2. A very sophisticated Operating system is required to schedule, balance &%

co-ordinate the input, output and processin

g activities of multiple CPUs.
Such system are very expensive.

[30]

(% scanned with OKEN Scanner

1.8.7.1 Distinguish between Multiprogramming and Multiprocessing
Multiprogramming is the interleaved execution of two or more processes by a single-
CPU computer system. On the other hand, multiprocessing is the simultaneous execution

of two or more processes by a computer system having more than one CPU.

1.8.8 Multitasking
In multiuser systems, multiasking is the same as multiprogramming. In a single-

user system, it is not necessary that the system work only on one job at a time. In

fact, a user of a single-user system often has multiple tasks concurrently processed

by the system.

In multitasking several programs reside in RAM together and are executed
simultaneously. In multitasking, the computer might be printing out a data file while

atthe same time the user is running a word processing program to enter a document.

Task 1 is Interrupted. Task 2 is Completed.
Task 2 is Performed. : Task 1 is Resumed.
i L/
Task 1 ! 1
Interrupt
FIGURE 1.15

The basic idea of multitasking is to allow devices to perform much of their own
processing,

independent of the CPU. Whenever a device requires the attention of
the CPU, it issues a signal to the CPU, Thi_s signal is called an interrupg. In respon§;~u
to an interrupt, the CPU puts aside its current activity and tends to the device. Then
the CPU returns to whatever it was doing when the interrupt occurred. In this way,

the CPU can carry out several simultaneous, or concurrent tasks. Multitasking

exchange information.

[31]

(% scanned with OKEN Scanner

The user can run & separate program in each window. This can be extremely Usg
The programs in the various windows can keep a number of system deviceg Wor,
atthe same time. For example, the program in Window 1 could be printing a docyp,
and the program in Window 2 could be transmitting a document to anothercompt_‘
via modum. Once the programs in Windows 1 is started, it can run Withoyt ,
attertion from the user. The user can than concentrate on the sale projectio

Window 2.

1.8.9 Distributed Operating System
A distributed system uses multiple central processors to serve multiple real--
applications and/or multiple classes of users. Each Central Processing Unit (CF
specializes in performing particular functions or serving a particular class of use-
Data processing jobs are distributed among the processors accordingly to whi
one can perform each job most efficiently. The Central Processors may all be locat:
at the same site, but more typically are geographically scattered and connected?

data communication lines, forming a distributed network.

Far distant places may be linked through satellite transmission channels or groun:
microwave systems and within same city through telephone lines or special coaxi:

cables.

Thus, In distributed operating systems, each processor has its own memory ant
executed its own jobs and shared jobs. The processors communicate with oné
another through various communication media. Such systems are also known &
loosely-coupled systems.

A typical application is in banks where all the branches have intelligent termina’

(usually micro-computers) linked to a big computer at the Head Office. Data from
the branches is sent to the master where it is processed.

The design of distributed operating system is based on two models :

(i) Client-server model

(i) Peer-to-peer model

(% scanned with OKEN Scanner

(i) Client Server Mogdel

In this model, a specific computer is known as server which 'is specially
dedicated to provide various services to other computers (called Clients). In
simple words, server can be defined as a provider of services and client can
be as a requester to sewiceg} Client makes a request for any kind of information
from the server and server in turn respond to the client request as shown in
figure 1.16. '

e
s

Ei2S

[

Client 1 Client 2 - Client 3

FIGURE 1.16 (CLIENT SERVER MODEL)

(’ii) Peer to Peer Model

In peer to peer model, there are no dedicated servers. All computers are equal
and, therefore, are termed as peer. Normally, each of these machines functions
both as a client and a server. This arrangement is suitable for environments
with a limited number of users (usually ten or less). In this models: users need

to freely access data and programs that reside on other computers across
the networi..

[33]

(% scanned with OKEN Scanner

FIGURE 1.17
The advantages of distributed systems include :

Reduction of the load on the host comptuer.

Reduction of delays in data processing.

Increased system availiability and faster system response time.

Better service to the customers.

Less risk of system breakdown.) Therefore, better reliability.

Less complexity of system design and implementaiton due to decentralise:
" Level of expertise required is less.

N o o »xowp =

1.8.10 Network Operating Systems

A network operating system provides an environment where users, who are awl‘.
of the multiplicity of machines, can access remote resoures by either logging’
the appropriate remote machine, or transferring data from the remote machi®
their own machines;./,-

A network operating system can be called as a special type of distributed operd
system which allows to connect many computers in a single channel or circult*
them. Thus in case of a network operating system two or more operating 5)'5’t
are in use at a time. One is the operating system on one or more machlneS |
other is the operating system managing the connection of these systems:
network operating system is that operating system which manages the workind®

computer network.
; [f«

(% scanned with OKEN Scanner

1.8.11 Parallel Processing System

In parallel processing systems, multiple CPUs work in parallel to improve
performance through parallel implementation of various operations such as loading
data, building indexes and evaluating queries.| Parallel processing divides a large
task into many smaller tasks and executes the smaller tasks concurrently on several
CPUs. As a result, the larger tasks completes more quickly. Parallel processing
systems improve processing and input/output (1/0) speeds by using multiple CPUs

and disks working in parallel.

There are three commonly used architectural models for parallel machines :

1.~ Shared-memory multiple CPU
“-2. Shared-disk multiple CPU
Shared-nothing multiple CPU

)

1. Shared-memory Multiple CPU
In a shared-memory system, a computer has several simultaneously active
CPUs that are attached to an interconnection network and can share a single
(or global) main memory and a common array of disk storage as shownin ﬁg.)
1.17
The shared-memory architecture of parallel system is closest to the traditional
single-CPU processor of centralised systems, but much faster in performance
as compared to the single-CPU of the same poweD

CPU CPU CPU CPU CPU
INTERCONNECTION NETWORK
Disk . Shared
Sglrz:;e Memory

FIGURE 1.17
[35]

(% scanned with OKEN Scanner

1./
|

' I
2. Shared-disk Multiple CPU

(In a shared disk system, multiple CPUs are attached to an interCOnneQ
network and each CPU has its own memory but all of them have acces}
the same disk storage or, more commonly, to a shared array of dis&

shown in fig. 1.18"

Since memory is not shared among CPUs, each node has its own copy g,
operating system. It is possible that, with the same data accessible to aﬂ Nor
two or more nodes may want to read or write the same data at the sarrﬂirr

=<

Individual Individual Individual Individual Individual
Memory Memory Memory Memory Memory

L LL
[177

- INTERCONNECTION NETWORK

CPU

FIGURE 1.18

3. | Shared-nothing Multiple CPU

t

(% scanned with OKEN Scanner

U

Individual Individual
Memory Memory
@ ﬁ (D
CPU @ Disk cru K
Storage

U

Individual
Memory
ﬁ O
CPU Disk
Storage

INTERCONNECTION NETWORK

i

s
N~ Disk CPU
Storage ﬁ
Individual Individual
Memory Memory
FIGURE 1.19
Advantages :)

Main advantages are :

1.~ Speedup

N

Speedup is the extent to which more hardware can perform the same task in
less time than the original systeni_;x With added hardware,(speedup holds the
task constant and measures time savings) Figure 1.20 shows how each
parallel hardware system performs half of the original task in half the time
‘required to perform it on a single system.)

ORIGINAL SYSTEM
Hardware > 100% Task
(or CPU) Time
PARALLEL SYSTEM
Hardware - 50% Task
(or CPU) Time
Hardware s 50% Task
(or CPU) Time
FIGUBE 1.20

[37]

(% scanned with OKEN Scanner

|

Scaleup : Scaleup is the factor that expresses how much more wopy &

2-
done in the same time period by a larger system. With added harg, .

2
formula for scaleup holds the time constant, and measures the InCreage,
of the job which can be done.)

—
ORIGINAL SYSTEM
Hardware — > 1007 Task
(or CPU) Time
PARALLEL SYSTEM
Hardware —
(or CPU) Time
200% Task
Hardware S
(or CPU) Time
FIGURE 1.21
It transaction volumes grow and you have good scale-up, you can k
response time constant by adding hardware resources such as CPUs.
3. High Avaiability : Nodes are isolated from each other, so a failure at¢

node does not bring the entire system down. This means data is much m
available than it would be with a single node upon node failure. This &
amounts to significantly higher database availability.

4. Greater Flexibility : A Parallel processing environment is extremely flext

5. More Users : Parallel processing technology can make it possible to overce’
memory limits, enabling a single system to serve thousands of users.

1.9 System Calls

The purpose of a system call is to request the operating system to perform 0"
activity. This means that system call provides an interface between a process &

the operating system. -
System calls are a set of commands which a user needs to interact with opera!”

system. For example, if user gives a copy command the operating system "
execute following systems calls -

1. Give message to input two file names.

2. To open source and destination files,
[¥

(% scanned with OKEN Scanner

T

Give error, if ahy

Read source file

Write in destination file

Display reading or writing error, if any

Close both files after execution of job

System calls are generally available as assembly - language instructions. Certain
systems allow system calls to be made directly from a high - level language program.
So to a high - level language programmer, invoking a system call is very similar in
nature to calling any other procedure or function. The essential difference, however
is that in case of a convential subroutine, the object code is part of the calling
program, while the system call code is within the operating systemj

An Operating System will only have a limited number of available system calls and
uppliemented by standard subroutine libraries. Many of

s, which provide additional higher level facilities for the
lls. These higher level subroutines are

s or APls. An API

N o o s

in general, these will be s
these standard subroutine
programmer, will themselves use system ca

generally organised into Application Programming Interface
would provide functions for all aspects of system activity, such as memory, file and

process management.

Fig 1.22 shows how a system call serves in achieving prdtection of operating system

from user program.

Operating System

User Program
System call
table open()

System call

= | > e
pe— j.

villl

reéad()

\

/
|

Il
H\H(l |

write()

System call System call
exit p— '[routines .
close()

-

. System Call (server) Is requested.

Switch mode; verify arguments and service

. Branch to the service function like read(), write() etc.
- Return from service function; switch mode

. Exit from system call

aa LN

FIGURE 1.22 [Protection Provided by System Cell]
[39]

(% scanned with OKEN Scanner

Dot

1.10

In unix, there are different system calls for performing different kinds of tasks.
n unix, |

File manipulation system calls like open(), close(), read(), write() et

e Process control system calls like abort(), exec(), wait(), fork() etc

e Device manipulation system calls like select(), open(), close() etc,
ke ti etc.

e Information maintenance system calls like time(), acct() etc

Communications system calls like send(), recv(), acc'ept() etc.

System Programs

—

System programs provide basic functioning to users so that they do not negy.
write their own environment for program development (editors, compliers) &
program execution (shells). In some sense, they are bundles of useful system czl

A most important systems program for an operating system is the comman
interpreter, the main function of which is to get and execute the next user specifie
command.

System programs can be divided into several categories.

1. _File Manipulation : These programs, Create, modify, copy, print, delete, lis

age Support : Compilers, interpreters, assemblers fo
g languages are provided to the user with the operating

[40]

(% scanned with OKEN Scanner

1.11 Operating System Structure

Before we discuss the structure of UNIX, DOS and Window NT Operating systems,
v :

let us understand what does actually an operating system comprise of? It contains

mainly a Kernel, command processor or shell and graphical user interface to make

a user's life simple.

(a) The Kernel: The Kernel provides the file systems, CPU Scheduling, Memory
Management and other operating system functions through system calls.
Programs such as shell (sh) and editors (vi) interact with the Kernel by invoking
a well defined set of system calls. The system calls instruct the Kernel to do
various operations for the calling programs and exchange data between Kernel

and program. ‘<

—> Shell

Hardware

FIGURE 1.23

(b) The Shell : The Shell provides an easy inteface between user and the
computer. The shell is a program that interprets the commands you type. If
the command is valid, the shelll directs the Kernel to carry out your request. If
the command is invalid, you will see and error message, and then the shell
program will give you another chance to tybe a valid command. In unix, at a
particular point in time, there may be several shells running in memory but

only one Kernel. This is because, at any instance Unix is capable of executing

only one program as the other programs wait for their turn.

[41]

(% scanned with OKEN Scanner

is an interface be
mand Processor | twe,
. The Command
essor :

s. Command Processor provides a Stangy,
ems. |

ess to file-management, dewc&

(c) Command Proc
the user and the operating syst
i acc

set of commands that gives USers

em ()()Ill ”Illa on all(' misce al 1eous 'Ul |CrO| 1S SUC“ as |“aintain.r,
t | " | " | ’ I;:
|||anag ent,

ifyi e time and date.
::e\:\l/f:nag c::mmand prompt is displayed the command proce.ssor walits f,
a command from the user. After user enters a comman.d, it (commanc
processor) makes sure that command is valid and executes' it. If comman.d i
notvalid, it gives an error message. For operating systems with GUI ((..-}raph,ca'
User Interface), the command processor interprets mouse operations apg

executes the appropriate command. It is also known as command line

interpreter.

(d) Graphicai User Interface (GUI) : A GUI is an application environment that
can work with graphical objects. For example, Microsoft Windows. In this

type of interface, the user select the pictures or icons available on the deskiop

(screen) to berfdrm his/her task. There is no need to remember the exac

syntax of the command in GUI.

Now let us see what are the possible ways of arranging these compohenls to

develop an operating system. This leads to the con

cept of operating system
architecture,

[42]

(% scanned with OKEN Scanner

In this approach, to construct the actual object program of the operating system
one first compiles all the individual procedures, or files containing the procedu‘res

and then binds them all together into a single object file using the system linker

Fig 1.24 shows the monolithic architecture of an operating system.

Main
Procedurs -

———-————-_————-

Procedure

Utility
Procedure

FIGURE 1.24 [A simple structuring model for a monolithic system]

This organization suggests a basic structure for the operating system :

1. A main program that invokes the requested service procedure.

i

o A set of service procedures that carry out'the system calls.
‘ {
3. A set of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes care of
it. The utility procedures do things that are needed by several service procedures,

such as fetching data from user programs as shown in fig.

Disadvantages

1. No information hiding as every procedure is visible to every other procedure.

2. Monolithic kernel is not very portable.

[43]

(% scanned with OKEN Scanner

Service e

1.11.2 Layered Architecture for OS

The operating system architecture based on layered approach consists of N,
of layer (levels), each built on top of lower layers. The bottom layer is the ha'dWarQ
the highest layer is the user interface. The first system constructed in this way W
the THE system built by E.W.Dijkestra (1968) and his students. The THE Systey

was a simple batch operating system which had 32k of 27 bit words.

6 Operator |
e
5 User Programs
4 Buffering for I/0 devices
3 Device Drivers for operator's console
2 Memory Management
1 CPU Scheduling + Multiprogramrﬁing
0 Hardware
A

(% scanned with OKEN Scanner

OS/2 operating system has a layered architecture. Earlier various of Windows NT

had a layer - oriented organization.

Disadvantages

1. It requires appropriate definition of the various layers and a careful planning
for the proper placement of the layers. For example the disk driver should be
normally above the CPU scheduler as the driver may have to wait for the I/O
and the CPU can be assigned to some other process by the scheduler, during
this time.

2. Sometimes, it is felt that each layer adds an overhead to the system call
executed by a user program for a specific purpose. As the result, system call

can consume much more time as compared to the one executed in a non-

layered system.

Advantages

1. The main advantage of the layered approach is modularity which helps in

debugging and verification of the system easily.

2. The layers are designed in such a way that it uses operation and services
only if a layer below it. A higher layer need not know how these operétions are
implemented, only what these operations do. Hence each layer hides
implementation details from higher leve'l layers. Any layer can be debugged

without any concern about the rest of the layer.

1.11.3 Virtual Machine Architecture For OS
(

The virtual machine operating system for IBM systems is the best example of the

virtual-machine concept, because IBM pioneered the work in this are@

4 .
By using CPU scheduling and virtual-memory techniques, an operating system

can illusi i
Create the illusion of multiple processor, each executing on its own processor
with its own virtual/memor@

[45]

(% scanned with OKEN Scanner

-T;hﬁai is, VM uses software techniques to make a single computer ap.pear tobs
multiple smaller computer systems. Each of these small computers, Simulatgy b
software, acts as an independent and complete computer system. It managesa.
real computing system so that all of its resources - CPU, storage a'nd l./O de\,ices
are available to many users at the same time. Each user has at his disposa| th
functional eqivalent of a real, dedicated computing system. Figure 1.25 shows the
virtual machine architecture of an operating system. Because this functiona;

equivalent is simulated by virtual machine and does not really exist, it is calleg,

—~

"virtual" machine.

User Program 1 User Program 2 L] User Program n

Operating System 1 Operating System 2 ece Operating System 2

Virtual Méchlne

Hardware

FIGURE 1.25 [Virtual Machine Archite;:ture]

(\Vmual machine has two main COmponents : Virtual Machine

-~ The control Program (CP) controls the real machine

The Conversational monitor system

machines.

(% scanned with OKEN Scanner

The CMS is a single-user interactive operating system that runs on top of GP and

interacts with the user and any application program running that virtual machine.

)
CThe idea of virtual machine is usgd nowadays in a different context.

.o~ Running MS-DOS programs on a Pentium

e~ The VM concept is used by Windows and other operating systems for running
MS-DOS programs.

N

e - Java is a very popular language designed by Sun Microsystems. Java is
implemented by a complier that generates bytecode output. These bytecodes
are the instructions that run on the Java Virtual Machine (JVM). Therefore,

for Java programs to runona platform, that platform must have a JVM running

onit.
Disadvantages
o g

This architecture is difficult to implement, as it requires lot of effort to provide an
exact duplicate of the underlying machine.

VAdvantages

1. Inthis concept, there is complete protection of the various system resources.

o Each Virtual Machine (VM) is completely isolated from all other virtual machines,
‘ so there are no security problems. |

3. ltis.possible to define a network of VMs, each of which can send information
over the virtual communications network.

4, A new field for OS research and development.

5, Virtual Machine Concept can solve the system compatibility problems.

1.11/4 Client-Server Architecture for O.S. (or Micro-Kernel architecture)

Q\ tend in modern operating systems is to take the idea of moving code up into
higher layers even further and remove as much as possible from kernel mode,

leaving a minimal microkerneb The usual approach is to implement most of the

[47]

|

(% scanned with OKEN Scanner

' To est a service, such as reading g p.
operating system in user processes.@o requ o

of afile, a user process (now known as the client process) sends the requeg; o,

server process, which then does the work and sen.ds back the answer ag sh%

in fig. 1.267
J

o

l) o
Client Client Process | Terminal tee SFlle r ’g‘;’:‘v e:'y User mogg
Process Process Server Server erve
L) Kérnel mogq
Microkernel \
Client obtains
service by
sending messages
to server processes

FIGURE 1.25 [The client-server mods! J

\/ ’ln client server model the operating system is divided into two kernels called user
Brocess (also called client-process) sends the request to a server process, which
then does the processing and sent the user request-back with answer. By splitting
the operating system up into parts each handles one facet of the system>

The main difference between client server model and all other models is that all the
SEIVers run as user-mode processes and not in kernel mode, they do not have
direct access to the hardv'vare."j‘

_The outcome of this feature is that if a long in the file server is triggered the file
service may crash, but this will not usually bring the whole machine down

>
Advantages

1. Client Server can ub'e used in distributed System.

2. Inclient server only work ke does is to communicate between client and

[48]

F

- : CX‘- Scanned with OKEN Scanner

Proce:
Managemen

_

!\J

A process can be viewed as a program in execution, and is used as a unit of WO
for a processor. To put this another way, you. can say that the process
simultaneously has to manage several activities at one tlme and each activi
corresponds to one process. ' A process will need certain resources such as CF

time, memory, files and I/O devices to accomplish its task. These resources 2
allocated to the process either when it is Created, or while it is executing.

Process Management manages the allocation of processes (tasks or jobs) t0
processor. The concept of process is central to the understanding of operati

system’s functioning. Therefore, it is very important to understand and apprecid
this concept fully.

Operating System Terminology

Ommonly used i - - sterm
are defined as follows - y used in relation to Operating Sy

(i)

User : A useris anybody who

desires w6rk to be do e
ne by a computer sy
based on his lnstructlons. : p

—

[50

(% scanned with OKEN Scanner

(i)
(iii)

(iv)

Job : Job is a collection of activities needed to accomplish the required task
Process (task) : Itis a computation that may be done concurrently with other
computations.

Address space : The collection of programmes and data that are accessed
during execution of a process forms an address space. Address space can
be for I/O processes, CPU processes etc.

The relationship between these is shown in Fig. 2.1

\

System Creates

Address
Space
CPU process

User Creates

Address
Space
I/0O process

FIGURE 2.1 [USER, JOB, PROCESS AND ADDRESS SPACE]

2.2 Definitions of "Process’'

Ina multiple program environment, a single pro
of the system. This gave rise t0 the conce

gram does not have complete control
pt of process. The term "Process" has

been given many definitions. Some of these definitions follows :

(i)
(i)
(i)

A process is a program in execution.
A process is the "animated spirit" of a procedure.

A process s that entity to which processors are assigned.
[51]

4

(% scanned with OKEN Scanner

2.3

(iv) A processis defined as an entity which represents the basic unit of v,

implemented in the system. |
For example, a text editor program running on a co'mputer is at;;;c:ceds.s._ A pr%
may cause several other processes to begin. For instance, : :eh iting Pr
can furnish a request for printing while ending the doc.u.ment. ere, the text e,
a program that initiates two processes - one for edmrTg. Fhe Ctje:)d ?hnd seco,
printing the document. There are numerous processe.s initiated by the syst.e,n{
run without giving any direct evidence that they ever exist. Hence, processiis ini
by the program to perform an action, which can be controlled by a user, or by

operating system.

Difference Between a Program and a Process

—

A program is defined as sequenced set of instructions whereas a Process s,
than the program code, which is sometimes known as the text section. |t;
includes the current activity, as represented by the value of the program cou
and the contents of the processor's registers. In addition, a process gene;
includes the process stack which contains temporary data such as fun
parameters, return addresses and local variables and a data section, which conts
global variables.

A program by itself is not a process. A program is a passive entity such as'
contents of a file stored on disk, whereas a process is an active entity, with a proy

counter specifying the next instruction to execute & a set of associated resources

I —

Program

Process

Passive Entity Active Entity

@3 FIGURE 2.2
=—=| Note : Beside innl'ifim s o . T ——— o

Beside including i i
includas g Instructions to be executed a process al

Program counter value.

® Temporary g
ata such as Subrouti
ne parame :
® Retun address P e
°
N Local and Glopg variables.

— —
— —
-~‘~
— —
— —

(% scanned with OKEN Scanner

Need of the "Process'' Concept

The concept of “process” is needed because the concept of a program is much
less abstract. Itis not sufficient to talk simply of 'programs' when considering the
job of the operating system in supervising the execution of shared or re-entrant
programs (Re-entrant means that the program can be executed two or more times

simultaneously.)

When there are several users sharing a program in a multi-user environment, there
are mainly two difficulties arising in font of O/S to execute these programs :

() The shared code in memory must not be altered during execution.

(i) Separate data area must be maintained for each 'execution’.

The process concept is introduced to facilitate representation and control of executing
programs in the face of these complixities. Each .copy of a program and each
separate execution of the one program are identified by a unique process within the

operating system.

Fig. 2.3 shows the sharing of a program and shows the need for the concept of process.

Operating System
User A
Shared Code
User B Private Data A
Private Data B
User C
Private Data C
Private Data D
User D
"o ® o0
[

FIGURE 2.3
[53]

(% scanned with OKEN Scanner

2.5 Process States and Their Transitions

—

When a process is born, its life in the system begins. During its existence, :

goes through a series of discrete states or we can say that as a process gy,

it changes state.

Each process may be in one of the followin

(i)

(i)

(iii)

(iv)

(V)

is ready to execute by the proces

is yet to be fulfilled, hence the process cannot execute even if thé

g states :

New

(The process is being created.)
to exécute, the O/S attempt to fir

Wherever a user types a program
e will be loaded and a systz~

program and, if successful, the program cod
used to generate a process corresponding to the execution of the prog=
Ready

(The process is waiting to be assigned toa p
process in the memory which may want to execute but:
ch can execute only one process at a time. So¢
t for the allocation of processer. A process W

rocessor.)

There are many
is one processor whi

processes must have, to wai
sor is said to be in ready state.

Running

(Instructions are being executed.)

The C.P.U. is currently allocated to the process and the process is in execut

Waiting/Blocked State

(The process is waiting for some event to occur (such as an I/O compl
stev!

etion

reception of a signal)). A process comes in the blocked state if the Ia

of interest to the process was a request made by it to the system. The red”
c.PU

available to it.

Terminated : The process has finished execution.
(%

.

(% scanned with OKEN Scanner

Fig. 3.4 shows state transitions of a process.

Interrupt

FIGURE 2.4

Some possible reasons for these transitions are .

(i) Ready to Running : A process is sellected.out o_'f the ready queue: (i.e.
scﬁeduled to be run) and is dispatched to the running state.

(i) Running to Waiting : /O operation is infact the most common reason for this
type of transition. Here, siﬁée a process is waiting fof I/O completion and thus
do not need CPU for executing any other instructions, CPU is freed by it and
CPU in the meantime takes up some other ready process and starts its
execution.

(iii) Waiting to Ready : The reason forra process to remain in waiting state is no
longer applicable e.g. /0 completes, timer goes off etc. Thus, the process

becomes ready for its execution.

(iv) Running to Ready : The running process is pre-empted because some other

process of higher priority has become ready.

[55]

(% scanned with OKEN Scanner

2.6 Process Control Block (PCB)

—

The PCB is data structure containing certain important information about the Prey.

Each process has its own PCB to represent it in the operating system,

The PCB is a central store of information that allows the operating system tg . .

all key information about a process.

A PCB may contain several types of informations depending upon the proce;.
which PCB belongs. The information stored in PCB of any process may vary i

process to process. But a general view of P.C.B. is shown in fig. 2.5.

Process State -

Process Number

Process Counter

Registers
(GPR'S, IR, SP etc.)

Memory Limits

List of open files

FIGURE 2.5
In general, a PCB may contain information regarding :

i) Pro : - :
(i) Cess number : Each process js identified by its process number, cal

process identification numper (PID)

(%
|

(% scanned with OKEN Scanner

(i) Priority: Each process is assigned a certain level of priority that corresponds

to the relative importance of the event that it services.

(ili) Process State: This information is about the-current state of the process i.e.

whether process is in new, ready, running, waiting or terminated state.

(iv) Program Counter : This contains the address of the next instruction to be

executed for this process.

(v) CPU registers: CPU registers vary is number and type, depending upon the
computer architectures. These include index register, stack pointers and
general purpose registers etc. When an interrupt occurred, information about
the current status of the old process is saved in the registers along with the
program counter. This information is necessary to allow the process to be

continued correctly after the completion of an interrupted process.

(vi) CPU Scheduling information : This information includes a process priority,
pointers to scheduling queues and any other scheduling parameters.

(vii) Memory - management information : This information may include such

- information as the value of base and limit registers, the page tables or the

segment tables depending upon the memory system used by the O/S.

(viii) Accounting : This includes actual CPU time used in executing a process in

order to charge individual users for processor time.

(ix) 1/0 Status: It includes outstanding I/O request, allocated devices information,
pending operations, and so on.

‘1) File Management : It includes information about all open files, access rights
etc.

Operations On Processes

. .

[57]

(% scanned with OKEN Scanner

o
~1

e Create a process
e Destroy a process

e Run a process

e Suspend a process

. Get process information

e Set process information
The operating system will supply mechanisms for at least some of these. Let

discuss process creation and process termination mechanisms provided by the

operating systems.

Process Creation

Creating a process involves many operations including :

() name the process

(i) insertitin the system's list of known processes
(i) determine the process's initial priority
() create the process control block.

(v) allocate the process's initial resources.

A process can create several new processes, via a Create-process system call,
during the course of execution, If it does, the creating process is called the parent
process and the created process js called the child process. The act of creating @
new process is often called Spawning a process. Only one parent is needed 10

create a child. i i
e ld. Such creation yields a hierarchical Process structure like that
shown in figure 2.6 in which each child has on|

Y one parent, ent may
have many children. P but each par

[58]

(% scanned with OKEN Scanner

Parent (Single)

Childrens

FIGURE 2.6 [Process Creating Hierarchy]

ocesses may need certain resources to accomplish

In general, a process & its sub-pr
o to obtain the desired resources in two ways :

its task. The subprocess may be als
(i) directly from the operating system

es among its children, or it may be
f its children. Restricting a

preve nts any process

(i) the parent may have to partition its resourc
also to share some resources among several 0
child process to a subset of the parent's resources

from overloading the system by creating too many subprocesses.

2.7.2 Process Termination

ates when it finishes executing its final statement and asks the

o delete it by using the exit system call: This involves returning
d by

A process termin
operating system t
of data to its parent process. All the resources of the process are deallocate

the operating system.
[59]

(% scanned with OKEN Scanner

Termination occurs under additional circumstances. A process can Cause th
termination of another process via an appropriate system call e.g. abort . Usyy

only a parent of the process that is to be terminated can invoke such a system al
Otherwise, users could arbitrarily kill each other's jobs. A parent therefore Needs .
know the identities of its children. Thus, when one process creates a new Proceg,

the identity of the newly created process is passed to the parent.

A parent may terminate the execution of one of its children due to the followgng

reasons
(i) The task assigned to the child is no longer required.

(i) ~ The parentis exiting and the operating system does not allow a child to continge

if its parent terminates. This is called cascading termination.

(i) The child has exceeded its usage of some of the resources that it has been

allocated. For this purpose, the parent must have a mechanism to inspect the
state of its children.

Process H terarchies

Operating Systems need ways to create and kill processes as discussed above.

When a process is created, it further creates more processes and so on, thus

forming a process hierarchy or process tree (as shown in above fig. 2.6. One of

the processes acts as a parent to all other processes.

2.9 Process Implementation

[60]

(% scanned with OKEN Scanner

Figure 2.7 shows how CPU passes control when multiple processes are running.

Interrupt

Executing

Running]
|

P

Reload context

Save context
of process P,

of process 1

Save context

Reload context
of process P,

of process 2

|
P.
Waiting I Executing I\‘ldle

Interrupt

FIGURE 2.7 [Passing of CPU control from one process to another process]

Multitasking operating system is essentially event-driven, i.e. they perform operations

in response to system events that can cause staté changes and can lead to a

nment. In an operating system it is essential to ensure that the

nd thus, enabled to process properly the

resources reassig

system is informed about each event, a
changes of globél system state.

Events may be internal such as sending and receiving signals or may be external

such as completion of I/O operation. External events usually occur asynchronously
and are signalled by means of interrupts. Internal events are usually synchronous

and occur as a side effect of the execution of OS system calls invoked by the

running process.
. [61]

(% scanned with OKEN Scanner

zf

f

2.10 Co-Operating Processes
| TN
A process is said to be co-operating process if it can affect or be affecteq by ,
other processes executing in the system. On the other hand, if a process canp,
affect or cannot be affected by the other processes in system, it is said to pe .
independent process. =
Any process that shares data with other processes is a co-operating process,
There are several reasons why an environment for co-operating processes g
provided :
(i) . Information Sharing /
Several users may want fo share same piece of information.
(i) Computation Speed Up |
If we want a particular task run faster,we must divide it into subtasks, each of
which will be executing in parallel with the others.
(iii) Modularity
We may want to construct the system in a modular fashion, dividing the system
functions into separate processes or threads.
(iv) Convenience
Even an individual user may have many tasks to work at one time. For example,
a user may be editing, printing and compiling in parallel.
2.11 Context Switch

Switching the CPU to another process requires saving th'e state of the old process

& loading the saved state for the new process. This task is known as a Context
Switch.

(% scanned with OKEN Scanner

When a context switch occurs, the Kernel saves the context of the old process in

its PCB & loads the saved context of the new process scheduled to run.

Context - Switch time is pure overhead, because the system does no useful work
while switching. Its speed varies from machine to machine, depending on the memory
speed, the number of registers that must be copies. Typical speeds range form 1 to

1000 microseconds.
Context - Switch times are highly dependent on hardware support. Also, the more

complex the O/S, the more work must be done during a context switch.

Threads

Definition : A thread is a single sequential flow of control within a program.

A thread, also known as a light-weight process, is an independent sequence of
execution within the context of a parer.t process. Inthe same way that one program
may consist of several processes, S0 one such 'real' process may spawn several
threads. Threads share the resources of the parent process (in particular, they
share the same memory address space) but are separately & independently

scheduled. Threads are created within, and belong to, processes.

A traditional (heavy weight) process has single thread of control. If the process
has multiple threads of control, it can do more than one task at a time.

A thread, similar to a sequential program, has a beginning, an end, a sequence, and
at any given time during the runtime of the thread, there is a single point of execution.
However, a thread itself is not a program - it cannot run on its own - but runs within

a program.

Like a process, a thread can be in any of several states (Running, Waiting, Ready
or Terminated). Each thread has its own stack. A thread has a program counter
(PC), a register set and stack space. Hence, threads provide a software approach
to improving performance of operating systems by reducing the overhead of process
switching.

[63]

(% scanned with OKEN Scanner

‘
2.13 Multithreading

—

The single thread of control allows the process to perform only one task g one j,
An example of a single thread in a process is a text editor where a user can eith;‘,
edit the texi or perform any other task like printing the document, Ina m”'“'taskin,
operating system, a process may contain several threads, all runnirg at the Sarr_;
time inside the same process. It means that one part of a process can be editing t

text, while another part is printing the document.

Hence, Multithreading is the ability of an operating system to execute differgy
parts of a program (threads) simultaneously. The programmer must carefully desig,
the program in such a way that all the threads can run at the same time withm

interfering with each other.

While multithreading offers many benefits on single-processor machineg,
multithreaded applications are essential for taking full advantage of multiprocessor
computers. Thus, to achieve maximum performance from multithreaded operating

systems and multiprocessor machines, an application must be multithreaded.

Advantages

Windows NT, Windows 95, and some variants of UNIX operating system are

multithreaded and run on either a single-processor machine or a multiprocesso
computer. On single-processor machines, multithreading can help applications where:
() Some task takes much longer to execute than others

(i) Some task needs a better deterministic outcome than others

(i) Some user interface activity is to be run concurrently with hardwaré

Communications,

_ f
On multiprocessor systems, multithreading of an application takes advantage °

the additional hardware ang can result in greatly improved overall performance.

|

|64

(% scanned with OKEN Scanner

2.13.1 Difference Between a traditional Single-threaded probess & a
multithreaded process

In essence, threads can perform many of the funcitons of processes but are much
'cheaper' in terms of system overheads. The operating system effort in creating a
new process or switching from one process execution to another is much greater

than the equivalent actions using threads.

However, the disadvantages of threads is that, since they share the same resources
(such as main memory), they may conflict in their accessing of these resources;

hence, it may be necessary for the application to mediate between competing threads.

Difference between a single-threaded process & a multiple-threaded process can

be understood with the help of following example.

In certain situations, a single application may be required to perform several similar__
tasks. e.g. a web server accepts client requests for web pages, images, sound &
so forth. A busy web server may have several of clients concurrent accessing it. If

the web server ran as a traditional single - threaded process, it would be able to
service only one client at atime. The amount of time that a client might have, to wait

for its request to be serviced could be enomorous.

One solution is to have, the server run as a single process that accept requests.
When the server receives a request, it creates a separate process to service that

request. In fact, this process - creation method was in common use before threads

became popular..

Process creation is very heavyweight, as was explained above. Also, if the new
process will perform the same tasks as the existing process, why incur all that
overhead? Itis generally more efficient for one process that contains multiple threads
to serve the same purpose. This approach would multithread the web - server
process. The server would create a separate thread that would listen for client
requests; when a request was made, rather than creating another process, it would

Cieate another thread to service the request.
[65]

(% scanned with OKEN Scanner

2.13.2 Life - Cycle of Threads

Threads have a similar life-cycle to the processes & are mainly manageq ing

same way. Initially each process is created with a single thread. However, threg,

are usually allowed to create new once using particular system calls. Then, g thre,.

tree is typically created for each process as shown in the figure 2.8.

—
Process
@
i
|
i
|
1
|
N
/\\ ;
|
/ \\ |
/ . '_ Threads }
\\
N
\\
N

running,

possible state transfer,

ready to run or blocked. Again, a state iti

transition diagram describes

(% scanned with OKEN Scanner

2.14 Processes vs Threads

——

As we mentioned eatrlier that in many respect threads operate in the same way as

that of processes. An idea of how threads and processes can be related to each

DWW

One Process, One Process,
one thread (MS-DOS) multiple thread (Java Runtime)

other is shown in figure 2.9.

—

Multiple Process, Multiple Process,
one thread per process (Unix) multiple thread (W2K, Solaris, Linux)

FIGURE 2.9 [Threds and Process]
Let us consider some similarities and differences between Threads and Processes.
Similarities

() Like processes threads share CPU and only one thread is active (running) at

atime.

(i) Threads also have almost the same states as processes - ready, running,
waiting.)

[67]

(% scanned with OKEN Scanner

(i) Like processes, thread can create children.
(iv) Each thread has its own stack and program counter.
(v) Like processes, if one thread is blocked/waiting, another thread can it

(vi) Within a process, a thread executes sequentially.

Differences

(i) Unlike processes, threads are not independent __of one another.

(i) Thereis noconceptof protection as in p}[océsses. All threads share the agg,

space of a task and therefore, a thread can read/write over any other thr..
stack.

(i) Processes may originate from different users, and may be hostile to one ang:.
whereas an individual task with multiple thréads Will always be ownedt;;
single user. | |

(iv) Unlike proesses, thread is design to assist one another. Note that proces:
might or might not assis{ one another because processes may originate f

different users.

(v) Time required to create a new thread in an existing process is less thant
create a new process.

(vi) Time required to terminate a thread is less than to terminate a process.

(vii) Time required to switch between two threads within the same process is s
than to switch between two processes.

2.15 CPU Scheduling

\)

e

_ . In a multiprogramming system, at any given time, several processes wil?
/"~ / competing for the CPU's time. At any instance, only one process Will be "‘tr
running state while others will be in ready or waiting state. The operating 5Y5

determines how to allocate processor time among all the ready processes: "

. _ : ’
allocation is referred as scheduling. Scheduling is a fundamental operating sy¢!
function.

-

(% scanned with OKEN Scanner

aeheduling refers to a sot of policios and maohnnisme Bt into e Oparaling systeir
that define the order i which the computor systam works. Gohoduler seoleots the
at ¢

next job to be admitted Into the systom for proconnlng

) 15.1 Objectives of Scheduling
The objective of scheduling are

() Maximize the system throughput,
() be 'fair'to all users.
(iiiy provide tolerable response or turn-around time,

(iv) degrade performance gracefully. If the system becomes overloaded, it
should not ‘collapse', but avoid further loading or temporarily reduce the level
of service.

(v) be consistent & predictable. The response & turn around time should be

relativly stable day to day.

2.16 Scheduling Criteria -~ .\ °

Different CPU-scheduling algorithms have different properties and may favor one
class of processes over another. In choosing which algorithm to use in a particular
situation, we must consider the properties of the various algorithms. Many criteria
have been suggested for comparing CPU-scheduling algorithms. The characteristics

used for comparison can make a substantial difference in the determination of the
best algorithm.

Let us consider various scheduling criteria.

() CPuU utilisation : CPU should remain as busy as possible. In a real system,

CPU utilisation should range from 40% to 90%.
[69]

(% scanned with OKEN Scanner

(i)

(iif)

(iv)

(v)

A

Throughput : It refers to the amount of work completed in a unit of "me,ﬁ
way to measure throughput is by means of the number of processeg thala:
completed in a unit of time. The higher the number of processes, the h
work apparently being done by the system. But this approach ig Not .
useful for comparison because this is dependent on the characteristics A
resource requirement of the process being executed. For example, jt al
processes are CPU bound, throughput will be less as compared to 1/Q bw‘
processes. Therefore to compare throughput of several scheduling algor,
it should be fed to the process with similar requirements.

Turnaround Time : It may be defined as interval from the time of Submigg,
of a process to the time of its completion. It is the sum of the periods Spe

waiting to get into memory, waiting in the ready queue, CPU time anq I
operations. It should be as less as possible.

Waiting Time : In multiprogramming operating system several jobs reside:
a time in memory, CPU executes only one job at a time. The rest of jobs wz
for the CPU. Waiting time is the time spent in for waiting for resource allocatiy

due to contentions with others in multiprogramming system by the process.!

is calculated by the following equation.
W(x) = T(x) - x

where W(x) = waiting time
T(x) = Turnaround time

X = units of Services

A
-

A (% scanned with OKEN Scanner

17 Scheduling Queunes

p—

A Process whon it is not executing, Is placed in some waliting queue. There are two

major classes of queue in an O/5: the ready queue and /0 request queue.,

() Ready queue : The ready queue contains all the processes that are ready to
execute and are waiting for the CPU. Each process is represented by a
PCB.This queue is generally stored as a linked list, A ready - queue header
contains pointers to the first and final PCBs in the list. Each PCB has a pointer

field that points to the next PCB in the ready queue as shown in fig. 2.10.

PCB 1 PCB 2 PCB 3 PCE 4

Ready Queue o [— /'\A N /’\; R J/’\; ——
_

>

—] ee—

9
X

FIGURE 2.10 [Ready Queue as a Linked Llst]

(i) /O request queue : The operating system a|56 has other queues. When a
process is allocated the C.P.U., it executes for a while and eventually quite, is
interrupted, or wait for the occurence of a particular event, such as the
completion of an I/O request. In the case of an I/O request, such a request
may be to a printer, or to a shared device, such as a disk. Since the system
has many processes, the printer may be busy with the I/O request of some
other process. The process therefore may have to wait for the printer. The list
of processes waiting for a particular /O device or another resource is called a
device queue or blocked queue. Each resource has its own queue as shown
in fig 2.11. |

[71]

(% scanned with OKEN Scanner

PCB Queues

pPCB 4

Bloe kod Quoun

> 3 —
Resource 1 v /\

END

PCB7 PCB 8 PCB 9

Resource 2 P — /\\ — /\ —

END

FIGURE 2.11 [Ready Queue as a Linked List]

4 common representaiton of process scheduling is a queueing diagram shown
n figure 2.12. Each rectangular box represents a queue. The circles represer

he resources that serve the queues, and the arrows indicate the flow o
rocesses in the system,

Enter \ Exit
> Ready Que
) yLueue CPU
o~
I/
O Quoue I/0 Request “
N Time Slice
Expired
B

\
! Interrupy [~
i Oceurs Wait for an Interrupt e

(% scanned with OKEN Scanner

A new process is initially put in the ready queue. It wait in this queue until itis
selected for execution. Once the process is assigned to the CPU and is

executing, one of the several events could occur :
() The process couldissue as I/O request, and then be placed in an I/O queue.

(i) The Process could be removed from the CPU due to expire of time slice

in time sharing system.
(i) The process could create a new subprocess and wait for its termination.

(iv) The process could be removed forcibly from the CPU, as a result of an

interrupt and be put back in the ready queue.
A process continues this cycle until it terminated, at which time it is removed

from all queues.

2.18 Levels of Scheduler

Scheduler is an operating system module that takes decision for admitting next job

into system for execution.

Scheduling can be exercised at three distinct levels, which we will refer to as High-

levels, Medium-level and low-level.

(i) High - level Scheduler (or long - term or job scheduler)
It deals with the decision as to whether to admit another new job to the system.

The High-Level Scheduler (HLS) controls the admissio~ ,cosinto the system
i.e. decides which newly submitted jobs are to be ¢ ...verted into processes
and be put into the ready queue to compete for access to the processor.

This activity is only really applicable to batch systems, since in as on-line

e —

_environment, processes will be admittec/ immediately unless the system is
fully loaded. —————

S Son e

[73]

(% scanned with OKEN Scanner

(i)

New jobs entered into the system will be put into a queue awaiting aCCem

by the HLS. The principle control which the HLS exercise is ensuring ‘ha t*,
computer is not overloaded, in the sense that the number of active p'OCeg%
(the degree of multiprogramming) is below a level consistant with efﬁcie'
running of the system. If the loading level is maximum, New processeg vil,

be'admitted until a current process terminates.

It the loading level is below maximum, a waiting process will be selecteq fr
the queue on the basis of some selection algorithm e.g. First come first sery,
(FCFS) or SJF (Shortest job first). These algorithms are also used within o,

level scheduling by short-term schedular.
Medium Level scheduler

The key idea behind a medium term scheduler is that sometimes it can .

advantageous to remove processes from memory, and thus to reduce ¢:

degree of multi programming. At some later time the process can b
Swap in

reintroduced into memory and its execution can be continued where it left of

This scheme is called swapping as shown in fig. 2.13.Time shanng system
use medium level scheduling.

Swap in Partially executed Swap out
—| swapped-out |<—
processes
enter m P Ready
r—| queue @ end

110 /0
queue [$=— /O request

(% scanned with OKEN Scanner

(iii) Low-level Scheduler (or Short-term scheduler or CPU scheduler)

The low level scheduler (LLS) is the most complex and significant of the
scheduling levels. Whereas the high and medium level schedulers operate
over time scales of seconds or minutes, the LLS is makiﬁg critical decisions
many times every second. The LLS (or CPU scheduler) selects from among
the processes that are ready to execute, and allocates the CPU to one of
them. A number of different policies have been devised for use in low level
schedulers, each of which has its own advantage and disadvantages. LLS is

performed by the dispatcher that operates many times per second.

Longt-term Short-term =
> Ready Queue CPU it

Scheduler _s| Scheduler N__

|| Suspended Queue}

FIGURE 2.14

2.19 Types of Scheduling

There are two types of scheduling algorithms

(i)
(i)
(i)

‘

Non-preemptive scheduling _
Preemptive scheduling

Non-preemptive sched'uling : In.non preemptive scheduling, a scheduling
decision is made every time some job in the system finishes its execution
(and at system initialization time). It means once a process has been given
the C.P.U, the CPU cannot be taken away from that process. In non-preemptive
scheduling, short jobs are made to wait by longer jobs, but the treatment of all
process is fairer. Response times are more predictable because incoming
high priority jobs cannot displace waiting jobs.

[75]

(% scanned with OKEN Scanner

g : On the other hand, in preemptive SCheduIing
r

(ii) Preemptive schedulin |
e made even while the execution of a jop o
x

scheduling decision can b

progress. Consequently, a job in execution may be forced to releag, b

processor so that execution of some other jobs can be undertaken. Preemmive

scheduling is useful in systems in which high-priority processes require ry,,

attention. To make preemption effective, many processes must be kept !

main storage so that the next process is normally read for CPU When

becomes available. Keeping non- -running programs in main storage alg,

involves overhead.

2.20 Dispatcher

——

Dispatcher is a program responsible for assigning the CPU to the process, whic:

has been selected by the short-term scheduler. Assigning the CPU to a read;

process involves three major steps :

(i) Context Switching : As you know, context switching implies the switching of
CPU from one process to another. It requires saving the state of old process

and loading the saved state, it any, for this ready process.

(i) Switching to user mode from monitor mode : As we know, & user processé
must be run in user mode therefore, mode must be changed from monito

mode to user mode.

(iii) Jumping to the proper location (or instruction) in the user program g
restart that program : The execution of process should be restarted bf
jumping to the instruction that was supposed to be executed when this process

was last interrupted or to the first instruction if this ready process is 10 be
executed for the first time after its creation.

Th
e dispatcher should be as fast as possible as it is invoked during every proces®

switch. T
he time it takes for the dlspatcher to stop one process and start anoth®’
running is known as the dispatch Iatency

[76]

(% scanned with OKEN Scanner

2.21 CPU Scheduling Algorithms

CPU Scheduling deals with the problem of deciding which of the processes in the

ready queue is to be allocated CPU first. The CPU is allocated to the selected

process by dispatcher. For scheduling CPU and to make proper & maximum

utilization of CPU, we have many algnrithm as follows :

2.21.1 First-Come, First-Served Scheduling : (FCFS)

As the name implies, the FCFS policy simply assigns the processor to the process

which is first in the ready queue. Key concept of this algorithm is "allocate the

processor (CPU) in the order in which the processor arrive". It is also known as

First in First out (FIFO). FCFS is non-scheme discipline. It is fair in formal sense but

somewhat unfair in that long jobs make short jobs wait, and unimportant jobs make

important jobs wait. The average waiting time under FCFS policy is quite long.

Ready'visit

B

CPU

Completion

Example 1

FIGURE 2.15 [First-In-Fist-Out Scheduling]

Consider the following set of processes that arrive at time 0, with the length of CPU

Burst time (or run time) given in milliseconds. CPU - burst time indicates that for

how much time, the process needs the CPU.

Process Burst Time Waiting time
P1 24 0
P2 3 24
P3 3 2L

[77]

(% scanned with OKEN Scanner

If the processes arrive in the order P1, P2, P‘3 and are served in FCrg Orge |

get the result in "GRANTT CHART".

The waiting tiine is 0 millisecond for process P1, 24 milliseconds for prOCess ,
{

and 27 milliseconds for process p3.

P1 P2 | P3

Thus the Average Waiting Time

_0+24+27 —17ms = Waiting Time
3 No.of Processes

Thus the average waiting time under FCFS policy is generally very long.~ FiFg;
rarely used on its own but it is often embedded within other schemes,

Advantages
(i) Itis simple to understand and code.
(i) Suitable for Batch Systems.

Disadvantages

() . Waiting time can be large if short réquests wait behind the long ones.

(i) Itis not suitable for time sharing s

should get the Cpy for an equal amount of time interva.

(i) A Proper mix of jobs (1’0 baseqd

and CPU baseq jobs) is needed to achieve
good results from FCFS scheduyl

ing.

2.21.2 Shortest- Jop. First Scheduling (SJF)

Key concept of thjg algorithm is :

[78]

(% scanned with OKEN Scanner

Amongst the processes in the ready queue, CPU is always assigned to the process
with least CPU burst requirement. SJF reduces average waiting time over FCFS.

When CPU is available it is assigned to the process that has the smallest run time.

If two processes have the same run time, FCFS is used to break the tie. The shorter
the job, the better service it will receive. This tends to reduce the number of waiting
jobs, and also reduces the number of waiting jobs, and also reduces the number of
jobs waiting behind large. As a result, SUF can minimize the average waiting time of
Jobs. The obvious problem with SJF is that it require precise knowledge of how

long a job or process will run.

Example 2

Consider the set of processes, with the length of CPU burst time given in milliseconds:

Process Burst Time Waiting time
P1 ems 3
P2 8ms 16
P3 7ms 9
P4 3ms 0

“GRANTT CHART"

P4 P1 P3 P2

0 3 9 16 . 24

Waiting Time is 3 milliseconds for process P1, 16 milliseconds for process P2, 9

ms for process P3 and 0 millisecond for process P4

Average Waiting Time = ks 1-6 o0 = = 7ms
4 4

[79]

(% scanned with OKEN Scanner

‘

If we were using FCFS policy, Average waiting Time would be 10.25 ms.
Thus SJF algorithm is optimal because it gives the minimum average waiting i
Advantages

() Minimum average waiting time.

Disadvantages

() The problem is to know the length of time for which CPU is needeq by,
process. A prediction formula can be used to predict the amount of time f,

which CPU may be required by a process.

2.21.3 Priority Scheduling

A priority is associated with each process and the CPU is allocated to the proces;

with highest priority. Equal priorities again are scheduled in FCFS order. Priories

[80]
CX‘- Scanned with OKEN Scanner

Exampl_e 3

Consider the processes :

Process Burst Time Priority Waiting time
Py 10 3 6
P2 1 1 0
P3 2 4 l 16
P4 1 5 18
P5 5 2 !

"GRANTT CHART"

P2 | P5 P1 P3 | P4

0 1 6 16 18 19

The Average Waiting time under priority scheduling algorithm is

6+0+16+18+1 41
= =—=38.2ms
5 5
Problem with priority scheduling : Preemptive priority scheduling some times

becomes the biggest cause of indefinite blocking or starvation of a process. If a

process is in ready state but its execution is almost always preempted due to the

arrival of higher priority process

mechanism like aging has to be built into the system SO that almost every process

should get the CPU in a fixed interval of time. This can be done by increasing the
Priority of a low-priority process after a fixed time interval so that at one moment of
time it becomes a high priority job as compared to others and thus, finally gets CPU
for its execution.

[81]
/

es, it will starve for its execution. Therefore, a

d

(% scanned with OKEN Scanner

- —

2.21.4 Round Robin Scheduling (RR)

In round robin scheduling, processes are dispatched FIFO but are given a,
amount of CPU time called a Time -slice or a quanturn. If a process does not Con,
before its CPU time expies, the CPU Is preempted & allocated to ney
process. The preempted process is then placed at the back of ready Quey .
scheduling is effective in time-sharing environments in which the system Nege,

guarantee reasonable response times for interactive users.

N
Ready Queue
Completio
A c B A —»| CPU —
Time Out
FIGURE 2.16 [Round Robin Scheduling]
Example 4
Consider the processes :
Process Burst Time
i e
P1)(w
P2 3
P3
3 VAA T
Set Time slice = 4mgs
then "GRANTT CHART"
P1|P
0 4 -
R e R N
(¢

(% scanned with OKEN Scanner

Waiting time for P1 willbe =0 + (10-4) =0 + 6 = 6MS
Waiting time for P2 will be = 4 ms

Waiting time for P3 willbe =7 ms

Average waiting time =6 + 4 + 7 = 5.66 ms
Advantages

(i) It is simple to understand
(ii) Suitable for Interactive Systems or time sharing systems

Disadvantages

(i) Performance depends heavily on the size of the time quantum

(i) Number of context switches - As mentioned above, the number of context-
switches should not be too many to slow down the overall execution of all the
processes. Time quantum should be large with respect to the context switch
time. This is to ensure that a process keeps CPU for a considerable amount

of time as compared the time spent in context switching.

2.22)/Iultilevel Queue Scheduling
s

Multilevel Queue scheduling was created for situation in which processes aré easily

classified into different groups. It has the following steps.

(i) A multi-level-queue schedulihg algorithm partitions the ready queue into
separate queues. Processes are permanently assigned to each queue, based
upon properties such as, interactive jobs, batch jobs, memory sizes, and so on.

(i) Each queue has its own scheduling algoritini. One may be using FCFS, the
other round-robin and so ON.

(ii) There must be scheduling algorithm between the queues. Usually this is &

“xe. . .ty preemptive scheduling. For example, the foreground queue may

[83]

(% scanned with OKEN Scanner

e background queue. A percentage-bagq, i

iori th
e absolute priority over . E
hav ch queue gets a certain Portion, ths

sliced approach can also be used. Ea h |
ng the various proc _
CPU time, which it can then schedule among Processeg :

i
queue.
Example 5
Consider a example of Multilevel Queue scheduling is : - having Five queues
(i) System processes
(i) Interactive processes.
(i) Interactive editing processes.
(iv) Batch processes
(v) User processes
Highest priority
— system processes >
—D interactive processes —> ;
|
|
|
— interacting editing processes —> ‘
l
|
—> batch processes >
> user processes ——
Lowest priority
— i

FIGURE 2,17 [Multiteyes Queue Scheduling |

Each que iori
Queue has absolyte Priority over lower-priority queue. No process in bal

Qqueue can run before system Process & sg on

Another ossibility " .
Possibility is to time slice between th for 8
particular time s|jce © Queues. Each queue runs

(% scanned with OKEN Scanner

Advantages
/’/

In a Multilevel Queue algorithm, processes are permanently assigned to a queue on
entry to the system. Since processes do not change their interactive foreground or

batch (background) nature, this set up has the advantage of low scheduling overhead.

Disadvantages
o

It is inflexible as the processes can never change their queues and thus may have to

starve for the CPU if one or the other higher priority queues are never becoming empty.

2.2Wﬁ-Level—Queues With Feedback Scheduling

~
[Ina multiple-level-queue scheduling algorithm processes do not move between

N :
queues. Multi level feedback queue scheduling allows a process to move between

queues. The idea is to separate processes with different CPU-burst characteristics.

If a process is using too much CPU time, it will be moved to a low-priority queue.
This scheme leaves I/O bound and interactive processes in the higher-priority
queues. Similarly, if a process waits too long in a lower priority queue, it may be
moved to a higher-priority queue/

\ i technique called "aging" promotes lower processes to the next higher priority

queue after a suitable interval of time.)
How to define this algorithm?

‘/T},edollowing things should be determined for the implementation of this type of

U"algorithm :

¢ Number of queues

® Scheduling algorithm for each queue

[85]

(% scanned with OKEN Scanner

higher—priority queue

priority queue

Method for upgrading a process 0 @
grading a process t0 a lower-

° Method for down

o Method for assigning a process t0 a queue initially.

Example 6

Consider a multilevel feedback queue. Scheduler with three queuesm Q1, Q2 an

Q3 as shown in fig. 2.18.

—
Q, Highest priority
—»] RR Scheduling Quantum = 8 P
Q,
_-> .
' RR Scheduling Quantum = 16 [reashessEpe
Q,
—>
FCFS D>
Lowest priority
FIGURE 2.18

Arprocess e.ntering the ready queue is put in queue Q1. The scheduler first executé
e ' is time, it is moved to the tail of the Q2. The schedu¢
. processeg in Q2 only when Q1 is empty. The process at the head of G2

given a quantum of 16 milli-seconds. If it doe; not complete, it is preempted andi

put into Q3. Processes |
n Q3 are run .
empty. on an FCFS basis, only when Q1 and 2"

A process that arrives

sin -
o Q1 will preempt a process in Q2 s i
will preempt a process in Q3 , a process that armnv

(863

4

(% scanned with OKEN Scanner

Consider the following set of processes with their CPU-burst times and arrival times

I
Process Arrival Time Burst time

—

P1 0 17ms

P2 12 25ms

P3 28 | 8ms

P4 36 30ms
L 1in Q,, which is

irst assigned to Q1. The scheduler first executes P

process P1 f
erefore, P1is moved to

quantum of 8ms. But P1 burst time is 17ms, th

given a time
er executes P2 in Q,. But at

f the Q,. Since Q, is empty, therefore schedul

the tail 0
e scheduler executes P2in Q,,

s, New process P2 is assigned to Q1, therefor
er exhausts the time quantum (8ms)

Q, having proces P1. Now Q, is
Q2 as shown in Gantt Chart.

12m

which is also given a time quantum of 8ms. Aft

of Q,, the process P2 is moved to the tail of the

empty, therefore scheduler executes the process in

p3 | P4 | P2 | P4| P4

p1 | Pt | P2| P1| P2
i | Q2| Q1| Q2| Q2 Q1 Q1 | Q2 Q2| Q3
0 8 12 20 25 28 36 .44 58 60 80
The waiting time for each process will be given bélow |
Process Waiting Time
P1 8ms
P2 21ms
P3 oms
P4 14ms
Average waiting time = 8421 Z 0+14
=10.75m

[87]

(% scanned with OKEN Scanner

