
III Year B. Tech. CSE –II Sem

(R15A0524) DISTRIBUTED SYSTEMS

Objectives:

 To learn the principles, architectures, algorithms and programming models used in
distributed systems.
 To examine state-of-the-art distributed systems, such as Google File System.
 To design and implement sample distributed systems.

UNIT I
Characterization of Distributed Systems: Introduction, Examples of Distributed systems,
Resource sharing and web, challenges.
System Models: Introduction, Architectural and Fundamental models.
UNIT II
Time and Global States: Introduction, Clocks, Events and Process states, Synchronizing
physical clocks, Logical time and Logical clocks, Global states, Distributed Debugging.
Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections, Multicast
Communication, Consensus and Related problems.

UNIT III
Inter Process Communication: Introduction, The API for the internet protocols, External Data
Representation and Marshalling, Client-Server Communication, Group Communication, Case
Study: IPC in UNIX.
Distributed Objects and Remote Invocation: Introduction, Communication between
Distributed Objects, Remote Procedure Call, Events and Notifications, Case study-Java RMI.
UNIT IV
Distributed File Systems: Introduction, File service Architecture, Case Study1: Sun Network
File System, Case Study 2: The Andrew File System.
Name Services: Introduction, Name Services and the Domain Name System, Directory
Services, Case study of the Global Name Service.
Distributed Shared Memory: Introduction Design and Implementation issues, Sequential
consistency and Ivy case study, Release consistency and Munin case study, other consistency
models.
UNIT V
Transactions and Concurrency Control: Introduction, Transactions, Nested Transactions,
Locks, Optimistic concurrency control, Timestamp ordering, Comparison of methods for
concurrency control.
Distributed Transactions: Introduction, Flat and Nested Distributed Transactions, Atomic
commit protocols, Concurrency control in distributed transactions, Distributed deadlocks,
Transaction recovery

 L T/P/D C
4 -/- / - 3

TEXT BOOK:
Distributed Systems, Concepts and Design, George Coulouris, J Dollimore and Tim
Kindberg, Pearson Education, 4th Edition,2009.

REFERENCES:
1. Distributed Systems, Principles and paradigms, Andrew S.Tanenbaum, Maarten Van
Steen, Second Edition, PHI.
2. Distributed Systems, An Algorithm Approach, Sikumar Ghosh, Chapman & Hall/CRC,
Taylor & Fransis Group, 2007.

Outcomes:
 Students will identify the core concepts of distributed systems: the way in which

several machines orchestrate to correctly solve problems in an efficient, reliable and
scalable way.
 Students will examine how existing systems have applied the concepts of distributed

systems in designing large systems, and will additionally apply these concepts to
develop sample systems.

INDEX

I

V

II

IV

III

UNIT NO TOPIC

Characterization of Distributed Systems

System Models

Time and Global States

Coordination and Agreement

Inter Process Communication

Distributed Objects and Remote
Invocation
Distributed File Systems

Name Services

Distributed Shared Memory

Transactions and Concurrency Control

Distributed Transactions

PAGE NO

01 - 22

23 - 36

37 - 50

51 - 66

67 - 83

84 - 128

129 - 144

145 - 159

160 - 169

170 - 180

181 - 194

Page | 1

DISTRIBUTED SYSTEMS

UNIT I

Characterization of Distributed Systems: Introduction, Examples of Distributed systems, Resource sharing
and web, challenges.
System Models: Introduction, Architectural and Fundamental models.

Examples of Distributed Systems–Trends in Distributed Systems – Focus on resource sharing –
Challenges. Case study: World Wide Web.
Introduction
A distributed system is a software system in which components located on networked
computers communicate and coordinate their actions by passing messages. The components
interact with each other in order to achieve a common goal.
Distributed systems Principles

A distributed system consists of a collection of autonomous computers, connected
through a network and distribution middleware, which enables computers to coordinate their
activities and to share the resources of the system, so that users perceive the system as a single,
integrated computing facility.
Centralised System Characteristics

 One component with non-autonomous parts
 Component shared by users all the time
 All resources accessible
 Software runs in a single process
 Single Point of control
 Single Point of failure
Distributed System Characteristics

 Multiple autonomous components
 Components are not shared by all users
 Resources may not be accessible
 Software runs in concurrent processes on different processors
 Multiple Points of control
 Multiple Points of failure
Examples of distributed systems and applications of distributed computing include the following:

 telecommunication networks:
 telephone networks and cellular networks,
 computer networks such as the Internet,
 wireless sensor networks,
 routing algorithms;

https://en.wikipedia.org/wiki/Telecommunication
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Wireless_sensor_networks
https://en.wikipedia.org/wiki/Routing_algorithm

Page | 2

Openness

Openness is concerned with extensions and improvements of distributed
systems. Detailed interfaces of components need to be published.
New components have to be integrated with existing components.
Differences in data representation of interface types on different
processors (of
different vendors) have to be resolved.

 network applications:
 World wide web and peer-to-peer networks,
 massively multiplayer online games and virtual reality communities,
 distributed databases and distributed database management systems,

 network file systems,
 distributed information processing systems such as banking systems and airline reservation
systems;
 real-time process control:
 aircraft control systems,
 industrial control systems;
 parallel computation:
 scientific computing, including cluster computing and grid computing and various volunteer
computing projects (see the list of distributed computing projects),
 distributed rendering in computer graphics.
Common Characteristics

Certain common characteristics can be used to assess distributed systems

 Resource Sharing
 Openness
 Concurrency
 Scalability
 Fault Tolerance
 Transparency
Resource Sharing

 Ability to use any hardware, software or data anywhere in the system.
 Resource manager controls access, provides naming scheme and controls concurrency.

 Resource sharing model (e.g. client/server or object-based) describing how

 resources are provided,
 they are used and
 provider and user interact with each other.






https://en.wikipedia.org/wiki/World_wide_web
https://en.wikipedia.org/wiki/Peer-to-peer_network
https://en.wikipedia.org/wiki/Peer-to-peer_network
https://en.wikipedia.org/wiki/Massively_multiplayer_online_game
https://en.wikipedia.org/wiki/Virtual_reality
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Distributed_database_management_system
https://en.wikipedia.org/wiki/Distributed_database_management_system
https://en.wikipedia.org/wiki/Distributed_file_system
https://en.wikipedia.org/wiki/Distributed_file_system
https://en.wikipedia.org/wiki/Aircraft
https://en.wikipedia.org/wiki/Industrial_control_systems
https://en.wikipedia.org/wiki/Parallel_computation
https://en.wikipedia.org/wiki/Scientific_computing
https://en.wikipedia.org/wiki/Cluster_computing
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Volunteer_computing
https://en.wikipedia.org/wiki/Volunteer_computing
https://en.wikipedia.org/wiki/List_of_distributed_computing_projects
https://en.wikipedia.org/wiki/Distributed_rendering

Page | 3

Scalability

Concurrency

Components in distributed systems are executed in concurrent processes.

 Components access and update shared resources (e.g. variables, databases, device
drivers).

 Integrity of the system may be violated if concurrent updates are not coordinated.
o Lost updates
o Inconsistent analysis

 Adaption of distributed systems to
• accomodate more users
• respond faster (this is the hard one)
 Usually done by adding more and/or faster processors.
 Components should not need to be changed when scale of a system increases.
 Design components to be scalable

Fault Tolerance

Hardware, software and networks fail!

 Distributed systems must maintain availability even at low levels of
hardware/software/network reliability.
 Fault tolerance is achieved by

• recovery
• redundancy
Transparency

Distributed systems should be perceived by users and application programmers as a whole rather
than as a collection of cooperating components.
• Transparency has different dimensions that were identified by ANSA.
• These represent various properties that distributed systems should have.

Page | 4

Access Transparency

Enables local and remote information objects to be accessed using identical operations.

• Example: File system operations in NFS.
• Example: Navigation in the Web.
• Example: SQL Queries

Location Transparency
Enables information objects to be accessed without knowledge of their location.
• Example: File system operations in NFS
• Example: Pages in the Web
• Example: Tables in distributed databases

Concurrency Transparency

Enables several processes to operate concurrently using shared information objects without
interference between them.
• Example: NFS
• Example: Automatic teller machine network
• Example: Database management system

Replication Transparency

Enables multiple instances of information objects to be used to increase reliability and
performance without knowledge of the replicas by users or application programs
• Example: Distributed DBMS
• Example: Mirroring Web Pages.
Failure Transparency

• Enables the concealment of faults
• Allows users and applications to complete their tasks despite the failure of other
components.
• Example: Database Management System
Migration Transparency

Allows the movement of information objects within a system without affecting the operations of
users or application programs
• Example: NFS
• Example: Web Pages
Performance Transparency
Allows the system to be reconfigured to improve performance as loads vary.

Page | 5

• Multiprocessors
• Multicomputers

Networks of Computers

Networks of Computers

Multiprocessors and Multicomputers
Distinguishing features:

• Private versus shared memory
• Bus versus switched interconnection

• Example: Distributed make.

Scaling Transparency

Allows the system and applications to expand in scale without change to the system structure or
the application algortithms.
• Example: World-Wide-Web
• Example: Distributed Database
Distributed Systems: Hardware Concepts

Page | 6

Distributed Systems: Software
Concepts Distributed operating system
_ Network operating system
_ Middleware

Distributed Operating System

Some characteristics:
_ OS on each computer knows about the other computers
_ OS on different computers generally the same
_ Services are generally (transparently) distributed across computers

High degree of node heterogeneity:
• High-performance parallel systems (multiprocessors as well as multicomputers)
• High-end PCs and workstations (servers)
• Simple network computers (offer users only network access)
• Mobile computers (palmtops, laptops)
• Multimedia workstations

High degree of network heterogeneity:
• Local-area gigabit networks
• Wireless connections
• Long-haul, high-latency connections
• Wide-area switched megabit connections

Page | 7

Distributed System (Middleware)
Some characteristics:
_ OS on each computer need not know about the other computers
_ OS on different computers need not generally be the same
_ Services are generally (transparently) distributed across computers

Network Operating System
Some characteristics:
_ Each computer has its own operating system with networking facilities
_ Computers work independently (i.e., they may even have different operating
systems) _ Services are tied to individual nodes (ftp, telnet, WWW)
_ Highly file oriented (basically, processors share only files)

Page | 8

-

Need for Middleware
Motivation: Too many networked applications were
hard or difficult to integrate:
_ Departments are running different NOSs
_ Integration and interoperability only at level of primitive NOS services
_ Need for federated information systems:
– Combining different databases, but providing a single view to applications
– Setting up enterprise-wide Internet services, making use of existing information systems
– Allow transactions across different databases
– Allow extensibility for future services (e.g., mobility, teleworking, collaborative applications)
_ Constraint: use the existing operating systems, and treat them as the underlying environment
(they provided the basic functionality anyway)

Communication services: Abandon primitive socket based message passing in favor of:
_ Procedure calls across networks
_ Remote-object method invocation
_ Message-queuing systems
_ Advanced communication streams
_ Event notification service
Information system services: Services that help manage data in a distributed system:
_ Large-scale, system wide naming services
_ Advanced directory services (search engines)
_ Location services for tracking mobile objects
_ Persistent storage facilities
_ Data caching and replication
Control services: Services giving applications control over when, where, and how they access
data:

Page | 9

_ Distributed transaction processing
_ Code migration
Security services: Services for secure processing and
communication: _ Authentication and authorization services
_ Simple encryption services
_ Auditing service

Comparison of DOS, NOS, and Middleware

Page | 10

Page | 11

-

Networks of computers are everywhere. The Internet is one, as are the many networks of
which it is composed. Mobile phone networks, corporate networks, factory networks, campus
networks, home networks, in-car networks – all of these, both separately and in combination,
share the essential characteristics that make them relevant subjects for study under the heading
distributed systems.

Distributed systems has the following significant consequences:

Concurrency: In a network of computers, concurrent program execution is the norm. I can do
my work on my computer while you do your work on yours, sharing resources such as web
pages or files when necessary. The capacity of the system to handle shared resources can be
increased by adding more resources (for example. computers) to the network. We will describe
ways in which this extra capacity can be usefully deployed at many points in this book. The
coordination of concurrently executing programs that share resources is also an important and
recurring topic.

No global clock: When programs need to cooperate they coordinate their actions by
exchanging messages. Close coordination often depends on a shared idea of the time at which
the programs’ actions occur. But it turns out that there are limits to the accuracy with which
the computers in a network can synchronize their clocks – there is no single global notion of
the correct time. This is a direct consequence of the fact that the only communication is by
sending messages through a network.
Independent failures: All computer systems can fail, and it is the responsibility of system
designers to plan for the consequences of possible failures. Distributed systems can fail in new
ways. Faults in the network result in the isolation of the computers that are connected to it, but
that doesn’t mean that they stop running. In fact, the programs
on them may not be able to detect whether the network has failed or has become unusually slow.
Similarly, the failure of a computer, or the unexpected termination of a program somewhere in
the system (a crash), is not immediately made known to the other components with which it
communicates. Each component of the system can fail independently, leaving the others still
running.

TRENDS IN DISTRIBUTED SYSTEMS

Distributed systems are undergoing a period of significant change and this can be traced back to

Page | 12

The Internet is also a very large distributed system. It enables users, wherever they are, to make
use of services such as the World Wide Web, email and file transfer. (Indeed, the Web is
sometimes incorrectly equated with the Internet.) The set of services is open-ended – it can be
extended by the addition of server computers and new types of service. The figure shows a
collection of intranets – subnetworks operated by companies and other organizations and
typically protected by firewalls. The role of a firewall is to protect an intranet by preventing
unauthorized messages from leaving or entering. A firewall is implemented by filtering incoming
and outgoing messages. Filtering might be done by source or destination, or a firewall might
allow only those messages related to email and web access to pass into or out of the intranet that
it protects. Internet Service Providers (ISPs) are companies that provide broadband links and
other types of connection to individual users and small organizations, enabling them to access
services anywhere in the Internet as well as providing local services such as email and web
hosting. The intranets are linked together by backbones. A backbone is a network link with a
high transmission capacity, employing satellite connections, fibre optic cables and other high-
bandwidth circuits

a number of influential trends:

 the emergence of pervasive networking technology;
 the emergence of ubiquitous computing coupled with the desire to support user mobility
in distributed systems;
 the increasing demand for multimedia services;
 the view of distributed systems as a utility.

Internet
The modern Internet is a vast interconnected collection of computer networks of many different
types, with the range of types increasing all the time and now including, for example, a wide
range of wireless communication technologies such as WiFi, WiMAX, Bluetooth and third-
generation mobile phone networks. The net result is that networking has become a pervasive
resource and devices can be connected (if desired) at any time and in any place.

A typical portion of the Internet

Page | 13

Intranet
–

–
–

Computers vs. Web servers in the Internet

print and otherservers

Local area
Web server network

 email server

File server

the rest of the Internet
router/fire
wall

print

other

servers

A portion of the Internet that is separately administered and has a
boundary that can be configured to enforce local security policies
Composed of several LANs linked by backbone connections
Be connected to the Internet via a router

A typical intranet
email server
Deskt
op
compu
ters

Page | 14

Main issues in the design of components for the use in intranet
• File services
• Firewall
• The cost of software installation and support

Mobile and ubiquitous computing
Technological advances in device miniaturization and wireless networking have led increasingly
to the integration of small and portable computing devices into distributed systems. These
devices include:
 Laptop computers.
 Handheld devices, including mobile phones, smart phones, GPS-enabled devices, pagers,
personal digital assistants (PDAs), video cameras and digital cameras.
 Wearable devices, such as smart watches with functionality similar to a PDA.
 Devices embedded in appliances such as washing machines, hi-fi systems, cars and
refrigerators.

Ubiquitous computing is the harnessing of many small, cheap computational devices that are
present in users’ physical environments, including the home, office and even natural settings.
The term ‘ubiquitous’ is intended to suggest that small computing devices will eventually

The portability of many of these devices, together with their ability to connect
conveniently to networks in different places, makes mobile computing possible. Mobile
computing is the

performance of computing tasks while the user is on the move, or visiting places other

than their
usual environment. In mobile computing, users who are away from their ‘home’ intranet(the
intranet at work, or their residence) are still provided with access to resources via the

devices
they carry with them. They can continue to access the Internet; they can continue toaccess
resources in their home intranet; and there is increasing provision for users to utilize
resources
such as printers or even sales points that are conveniently nearby as they move around.The latter
is also known as location-aware or context-aware computing. Mobility introduces a
number of
challenges for distributed systems, including the need to deal with variable connectivityand
indeed disconnection, and the need to maintain operation in the face of device mobility.

Portable and handheld devices in a distributed system

Printer

Host intranet

Camera

Wireless LAN

Mobile
phone
Laptop

Internet

Host site

WAP
gatewa
y

Home intranet

Page | 15

HTML

become so pervasive in everyday objects that they are scarcely noticed. That is, their
computational behaviour will be transparently and intimately tied up with their
physicalfunction.

The presence of computers everywhere only becomes useful when they can

communicate with
one another. For example, it may be convenient for users to control their washingmachine or
their entertainment system from their phone or a ‘universal remote control’ device in

the home.
Equally, the washing machine could notify the user via a smart badge or phone when the
washing is done.

Ubiquitous and mobile computing overlap, since the mobile user can in principle

benefit from
computers that are everywhere. But they are distinct, in general. Ubiquitouscomputing could
benefit users while they remain in a single environment such as the home or a hospital.

Similarly,
mobile computing has advantages even if it involves only conventional, discretecomputers and
devices such as laptops and printers.
RESOURCE SHARING
• Is the primary motivation of distributed computing
• Resources types
– Hardware, e.g. printer, scanner, camera
– Data, e.g. file, database, web page
– More specific functionality, e.g. search engine, file
• Service
– manage a collection of related resources and present their functionalities to users
and applications
• Server
– a process on networked computer that accepts requests from processes on other
computers to perform a service and responds appropriately
• Client
– the requesting process
• Remote invocation
A complete interaction between client and server, from the point when the client sends its
request to when it receives the server’s response
• Motivation of WWW
– Documents sharing between physicists of CERN

– Web is an open system: it can be extended and implemented in new ways without
disturbing its existing functionality.
– Its operation is based on communication standards and document standards

– Respect to the types of ‘resource’ that can be published and shared on it.
• HyperText Markup Language
– A language for specifying the contents and layout of pages
• Uniform Resource Locators
– Identify documents and other resources
• A client-server architecture with HTTP

– By with browsers and other clients fetch documents and other resources from web
servers

Page | 16

HTTP URLs

HTML text is stored in a file of a web server.

 A browser retrieves the contents of this file from a web server.
-The browser interprets the HTML text

-The server can infer the content type from the filename extension.

URL


 HTTP URLs are the most widely used

 An HTTP URL has two main jobs to do:
- To identify which web server maintains the resource
- To identify which of the resources at that server
Web servers and web browsers

Page | 17

HTTP

• Defines the ways in which browsers and any other types of client interact with web
servers (RFC2616)
• Main features
– Request-replay interaction
– Content types. The strings that denote the type of content are called MIME
(RFC2045,2046)
– One resource per request. HTTP version 1.0
– Simple access control
More features-services and dynamic pages

• Dynamic content
– Common Gateway Interface: a program that web servers run to generate content
for their clients
• Downloaded code
– JavaScript
– Applet
Discussion of Web


 Dangling: a resource is deleted or moved, but links to it may still remain


 Find information easily: e.g. Resource Description Framework which standardize
the format of metadata about web resources
 Exchange information easily: e.g. XML – a self describing language

 Scalability: heavy load on popular web servers


 More applets or many images in pages increase in the download time

Page | 18

THE CHALLENGES IN DISTRIBUTED SYSTEM:

Heterogeneity

The Internet enables users to access services and run applications over a heterogeneous
collection of computers and networks. Heterogeneity (that is, variety and difference) applies to
all of the following:
 networks;
 computer hardware;
 operating systems;
 programming languages;
 implementations by different developers

Although the Internet consists of many different sorts of network, their differences are masked
by the fact that all of the computers attached to them use the Internet protocols to communicate
with one another. For example, a computer attached to an Ethernet has an implementation of the
Internet protocols over the Ethernet, whereas a computer on a different sort of network will need
an implementation of the Internet protocols for that network.
Data types such as integers may be represented in different ways on different sorts of hardware –
for example, there are two alternatives for the byte ordering of integers. These differences in
representation must be dealt with if messages are to be exchanged between programs running on
different hardware. Although the operating systems of all computers on the Internet need to
include an implementation of the Internet protocols, they do not necessarily all provide the same
application programming interface to these protocols. For example, the calls for exchanging
messages in UNIX are different from the calls in Windows.
Different programming languages use different representations for characters and data structures
such as arrays and records. These differences must be addressed if programs written in different
languages are to be able to communicate with one another. Programs written by different
developers cannot communicate with one another
unless they use common standards, for example, for network communication and the
representation of primitive data items and data structures in messages. For this to happen,
standards need to be agreed and adopted – as have the Internet protocols.

Middleware • The term middleware applies to a software layer that provides a programming
abstraction as well as masking the heterogeneity of the underlying networks, hardware, operating
systems and programming languages. The Common Object Request Broker (CORBA), is an
example. Some middleware, such as Java Remote Method Invocation (RMI), supports only a
single programming language. Most middleware is implemented over the Internet protocols,
which themselves mask the differences of the underlying networks, but all middleware deals
with the differences in operating systems and hardware.

Heterogeneity and mobile code • The term mobile code is used to refer to program code that
can be transferred from one computer to another and run at the destination – Java applets are an
example. Code suitable for running on one computer is not necessarily suitable for running on
another because executable programs are normally specific both to the instruction set and to the
host operating system.
The virtual machine approach provides a way of making code executable on a variety of host
computers: the compiler for a particular language generates code for a virtual machine instead of

Page | 19

-

a particular hardware order code. For example, the Java compiler produces code for a Java
virtual machine, which executes it by interpretation.
The Java virtual machine needs to be implemented once for each type of computer to enable Java
programs to run.
Today, the most commonly used form of mobile code is the inclusion Javascript programs in
some web pages loaded into client browsers.
Openness

The openness of a computer system is the characteristic that determines whether the system can
be extended and reimplemented in various ways. The openness of distributed systems is
determined primarily by the degree to which new resource-sharing services can be added and be
made available for use by a variety of client programs.
Openness cannot be achieved unless the specification and documentation of the key software
interfaces of the components of a system are made available to software developers. In a word,
the key interfaces are published. This process is akin to the standardization of interfaces, but it
often bypasses official standardization procedures,
which are usually cumbersome and slow-moving. However, the publication of interfaces is only
the starting point for adding and extending services in a distributed system. The challenge to
designers is to tackle the complexity of distributed systems consisting of many components
engineered by different people. The designers of the Internet protocols introduced a series of
documents called ‘Requests For Comments’, or RFCs, each of which is known by a number. The
specifications of the Internet communication protocols were published in this series in the early
1980s, followed by specifications for applications that run over them, such as file transfer, email
and telnet by the mid-1980s.
Systems that are designed to support resource sharing in this way are termed open distributed
systems to emphasize the fact that they are extensible. They may be extended at the hardware
level by the addition of computers to the network and at the software level by the introduction of
new services and the reimplementation of old ones, enabling
application programs to share resources.

To summarize:
• Open systems are characterized by the fact that their key interfaces are published.
• Open distributed systems are based on the provision of a uniform communication mechanism
and published interfaces for access to shared resources.
• Open distributed systems can be constructed from heterogeneous hardware and software,
possibly from different vendors. But the conformance of each component to the published
standard must be carefully tested and verified if the system is to work correctly.

Security

Many of the information resources that are made available and maintained in distributed systems
have a high intrinsic value to their users. Their security is therefore of considerable importance.
Security for information resources has three components: confidentiality (protection against
disclosure to unauthorized individuals), integrity

Page | 20

-

(protection against alteration or corruption), and availability (protection against interference with
the means to access the resources).
In a distributed system, clients send requests to access data managed by servers, which involves
sending information in messages over a network. For example:
1. A doctor might request access to hospital patient data or send additions to that data.
2. In electronic commerce and banking, users send their credit card numbers across the Internet.
In both examples, the challenge is to send sensitive information in a message over a network in a
secure manner. But security is not just a matter of concealing the contents of messages – it also
involves knowing for sure the identity of the user or other agent on whose behalf a message was
sent.
However, the following two security challenges have not yet been fully met:

Denial of service attacks: Another security problem is that a user may wish to disrupt a service
for some reason. This can be achieved by bombarding the service with such a large number of
pointless requests that the serious users are unable to use it. This is called a denial of service
attack. There have been several denial of service attacks on well-known web services. Currently
such attacks are countered by attempting to catch and punish the perpetrators after the event, but
that is not a general solution to the problem.
Security of mobile code: Mobile code needs to be handled with care. Consider someone who
receives an executable program as an electronic mail attachment: the possible effects of running
the program are unpredictable; for example, it may seem to display an interesting picture but in
reality it may access local resources, or perhaps be part of a denial of service attack.
Scalability

Distributed systems operate effectively and efficiently at many different scales, ranging from a
small intranet to the Internet. A system is described as scalable if it will remain effective when
there is a significant increase in the number of resources and the number of users. The number of
computers and servers in the Internet has increased dramatically. Figure 1.6 shows the increasing
number of computers and web servers during the 12-year history of the Web up to 2005
[zakon.org]. It is interesting to note the significant growth in both computers and web servers in
this period, but also that the relative percentage is flattening out – a trend that is explained by the
growth of fixed and mobile personal computing. One web server may also increasingly be hosted
on multiple computers.

The design of scalable distributed systems presents the following challenges:

Controlling the cost of physical resources: As the demand for a resource grows, it should be
possible to extend the system, at reasonable cost, to meet it. For example, the frequency with
which files are accessed in an intranet is likely to grow as the number of users and computers
increases. It must be possible to add server computers to avoid the performance bottleneck that
would arise if a single file server had to handle all file access requests. In general, for a system
with n users to be scalable, the quantity of physical resources required to support them should be

Page | 21

at most O(n) – that is, proportional to n. For example, if a single file server can support
20 users, then two such servers should be able to support 40 users.

Controlling the performance loss: Consider the management of a set of data whose size is
proportional to the number of users or resources in the system – for example, the tablewith the
correspondence between the domain names of computers and their Internet addresses

held by the
Domain Name System, which is used mainly to look
up DNS names such as www.amazon.com. Algorithms that use hierarchic structures
scale better
than those that use linear structures. But even with hierarchic structures an increase insize will
result in some loss in performance: the time taken to access hierarchically structured
data is
O(log n), where n is the size of the set of data. For a
system to be scalable, the maximum performance loss should be no worse than this.

Preventing software resources running out: An example of lack of scalability is shown

by the
numbers used as Internet (IP) addresses (computer addresses in the Internet). In thelate 1970s, it
was decided to use 32 bits for this purpose, but as will be explained in Chapter 3, the

supply of
available Internet addresses is running out. For this reason, a new version of theprotocol with
128-bit Internet addresses is being adopted, and this will require modifications to many

software
components.

Avoiding performance bottlenecks: In general, algorithms should be decentralized to
avoid having performance bottlenecks. We illustrate this point with reference to the
predecessor of the Domain Name System, in which the name table was kept in a single
master file that could be downloaded to any computers that needed it. That was
fine when there were only a few hundred computers in the Internet, but it soon became
a serious performance and administrative bottleneck.

Failure handling

Computer systems sometimes fail. When faults occur in hardware or software, programs

may
produce incorrect results or may stop before they have completed the intendedcomputation.
Failures in a distributed system are partial – that is, some components fail while others

continue
to function. Therefore the handling of failures is particularly difficult.
Detecting failures: Some failures can be detected. For example, checksums can be used

to detect
corrupted data in a message or a file. It is difficult or even impossible to detect someother
failures, such as a remote crashed server in the Internet. The challenge is to manage in

the
presence of failures that cannot be detected but may be suspected.

http://www.amazon.com/

Page | 22

Masking failures: Some failures that have been detected can be hidden or made less
severe. Two examples of hiding failures:
1. Messages can be retransmitted when they fail to arrive.
2. File data can be written to a pair of disks so that if one is corrupted, the other may
still be correct.

Tolerating failures: Most of the services in the Internet do exhibit failures – it would not be
practical for them to attempt to detect and hide all of the failures that might occur insuch a large
network with so many components. Their clients can be designed to tolerate failures,

which
generally involves the users tolerating them as well. For example, when a web browsercannot
contact a web server, it does not make the user wait for ever while it keeps on trying – it

informs
the user about the problem, leaving them free to try again later. Services that toleratefailures are
discussed in the paragraph on redundancy below.
Recovery from failures: Recovery involves the design of software so that the state ofpermanent
data can be recovered or ‘rolled back’ after a server has crashed. In general, the

computations
performed by some programs will be incomplete when a fault occurs, and thepermanent data
that they update (files and other material stored
in permanent storage) may not be in a consistent state.
Redundancy: Services can be made to tolerate failures by the use of redundant

components.
Consider the following examples:
1. There should always be at least two different routes between any two routers in the

Internet.
2. In the Domain Name System, every name table is replicated in at least two differentservers.
3. A database may be replicated in several servers to ensure that the data remains

accessible after
the failure of any single server; the servers can be designed to detect faults in theirpeers; when a
fault is detected in one server, clients are redirected to the remaining servers.

Concurrency
Both services and applications provide resources that can be shared by clients in adistributed
system. There is therefore a possibility that several clients will attempt to access a shared
resource at the same time. For example, a data structure that records bids for anauction may be
accessed very frequently when it gets close to the deadline time. The process that

manages a
shared resource could take one client request at a time. But that approach limitsthroughput.
Therefore services and applications generally allow multiple client requests to be

processed
concurrently. To make this more concrete, suppose that each resource is encapsulated asan
object and that invocations are executed in concurrent threads. In this case it is possible

that
several threads may be executing concurrently within an object, in which case theiroperations on
the object may conflict with one another and produce inconsistent results.

Page | 23

Systems that are intended for use in real-world environments should be designed to
function correctly in the widest possible range of circumstances and in the face of many
possible difficulties and threats .

Each type of model is intended to provide an abstract, simplified but consistent

description of a
relevant aspect of distributed system design:
Physical models are the most explicit way in which to describe a system; they capture the
hardware composition of a system in terms of the computers (and other devices, suchas mobile
phones) and their interconnecting networks.

Architectural models describe a system in terms of the computational and

communication tasks
performed by its computational elements; the computational elements being individual
computers or aggregates of them supported by appropriate network interconnections.

Concurrency transparency enables several processes to operate concurrently using shared
resources without interference between them.
Replication transparency enables multiple instances of resources to be used to increase reliability
and performance without knowledge of the replicas by users or application programmers.
Failure transparency enables the concealment of faults, allowing users and application programs
to complete their tasks despite the failure of hardware or software components.
Mobility transparency allows the movement of resources and clients within a system without
affecting the operation of users or programs.

Performance transparency allows the system to be reconfigured to improve performance as
loads vary.
Scaling transparency allows the system and applications to expand in scale without change to the
system structure or the application algorithms.

Quality of service

Once users are provided with the functionality that they require of a service, such as the file
service in a distributed system, we can go on to ask about the quality of the service provided. The
main nonfunctional properties of systems that affect the quality of the service experienced by
clients and users are reliability, security and performance.

Adaptability to meet changing system configurations and resource availability has been
recognized as a further important aspect of service quality.
Some applications, including multimedia applications, handle time-critical data – streams of data
that are required to be processed or transferred from one process to another at a fixed rate. For
example, a movie service might consist of a client program that is retrieving a film from a video
server and presenting it on the user’s screen. For a satisfactory result the successive frames of
video need to be displayed to the user within some specified time limits.

In fact, the abbreviation QoS has effectively been commandeered to refer to the ability of
systems to meet such deadlines. Its achievement depends upon the availability of the necessary
computing and network resources at the appropriate times. This implies a requirement for the

system to provide guaranteed computing and communication resources that are sufficient to
enable applications to complete each task on time (for example, the task of displaying a frame of
video).

 INTRODUCTION TO SYSTEM MODELS

Page | 24

– Remote Procedure Calls – Client programs call procedures in server programs
– Remote Method Invocation – Objects invoke methods of objects on distributed hosts
– Event-based Programming Model – Objects receive notice of events in other objects
in which they have interest

Middleware
• Middleware: software that allows a level of programming beyond processes andmessage

Fundamental models take an abstract perspective in order to examine individual aspects of a
distributed system. The fundamental models that examine three important aspects of distributed
systems: interaction models, which consider the structure and sequencing of the communication
between the elements of the system; failure models, which consider the ways in which a system
may fail to operate correctly and; security models, which consider how the system is protected
against attempts to interfere with its correct operation or to steal its data.

Architectural models

The architecture of a system is its structure in terms of separately specified components and their
interrelationships. The overall goal is to ensure that the structure will meet present and likely
future demands on it. Major concerns are to make the system reliable, manageable, adaptable and
cost-effective. The architectural design of a building has similar aspects – it determines not only
its appearance but also its general structure and architectural style (gothic, neo-classical, modern)
and provides a consistent frame of reference for the design.
Software layers
The concept of layering is a familiar one and is closely related to abstraction. In a layered
approach, a complex system is partitioned into a number of layers, with a given layer making use
of the services offered by the layer below. A given layer therefore offers a software abstraction,
with higher layers being unaware of implementation details, or indeed of any other layers beneath
them.
In terms of distributed systems, this equates to a vertical organization of services into service
layers. A distributed service can be provided by one or more server processes, interacting with
each other and with client processes in order to maintain a consistent system-wide view of the
service’s resources. For example, a network time service is implemented on the Internet based on
the Network Time Protocol (NTP) by server processes running on hosts throughout the Internet
that supply the current time to any client that requests it and adjust their version of the current
time as a result of interactions with each other. Given the complexity of distributed systems, it is
often helpful to organize such services into layers. the important terms platform and middleware,
which define as follows:

The important terms platform and middleware, which is defined as follows:

A platform for distributed systems and applications consists of the lowest-level hardware and
software layers. These low-level layers provide services to the layers above them, which are
implemented independently in each computer, bringing the system’s programming interface up
to a level that facilitates communication and coordination between processes. Intel x86/Windows,
Intel x86/Solaris, Intel x86/Mac OS X, Intel x86/Linux and ARM/Symbian are major examples.

Page | 25

passing
– Uses protocols based on messages between processes to provide its higher-level
abstractions such as remote invocation and events
– Supports location transparency
– Usually uses an interface definition language (IDL) to define interfaces

Middleware

Operating system

Applications, services

Computer and networkhardware

Page | 26

-

Interfaces in Programming Languages
– Current PL allow programs to be developed as a set of modules that communicate with each
other. Permitted interact ions between modules are defined by interfaces
– A specified interface can be implemented by different modules without the need to modify
other modules using the interface

• Interfaces in Distributed Systems

– When modules are in different processes or on different hosts there are limitations
on the interactions that can occur. Only actions with parameters that are fully specified and
understood can communicate effectively to request or provide services to modules in another
process
– A service interface allows a client to request and a server to provide particular services
– A remote interface allows objects to be passed as arguments to and results from distributed
modules
• Object Interfaces
– An interface defines the signatures of a set of methods, including arguments, argument types,
return values and exceptions. Implementation details are not included in an interface.
A class may implement an interface by specifying behavior for each method in the interface.
Interfaces do not have constructors.
System architectures

Client-server: This is the architecture that is most often cited when distributed systems are
discussed. It is historically the most important and remains the most widely employed. Figure 2.3
illustrates the simple structure in which processes take on the roles of being clients or servers. In
particular, client processes interact with individual server processes in potentially separate host
computers in order to access the shared resources that they manage.
Servers may in turn be clients of other servers, as the figure indicates. For example, a web server
is often a client of a local file server that manages the files in which the web pages are stored.
Web servers and most other Internet services are clients of the DNS service, which translates
Internet domain names to network addresses.

Page | 27

Shara
ble

obje
cts

Clients invoke individual servers

A distributed application based on peer processes
Peer 2

Peer 1
Application

Application

Peer 3

Applicat
ion

Another web-related example concerns search engines, which enable users to look up
summaries of information available on web pages at sites throughout the Internet. These
summaries are made by programs called web crawlers, which run in the background at a
search engine site using HTTP requests to access web servers throughout the Internet.
Thus a search engine is both a server and a client: it responds to queries from browser
clients and it runs web crawlers that act as clients of other web servers. In this example,
the server tasks (responding to user queries) and the crawler tasks (making requests to
other web servers) are entirely independent; there is little
need to synchronize them and they may run concurrently. In fact, a typical search
engine would
normally include many
concurrent threads of execution, some serving its clients and others running web
crawlers. In
Exercise 2.5, the reader is invited to consider the only synchronization issue that does
arise for a
concurrent search engine of the type outlined here.

Peer-to-peer: In this architecture all of the processes involved in a task or activity play

similar
roles, interacting cooperatively as peers without any distinction between client and server
processes or the computers on which they run. In practical terms, all participating

processes run
the same program and offer the same set of interfaces to each
other. While the client-server model offers a direct and relatively simple approach to the
sharing
of data and other resources, it scales poorly.

Client

Client

result

invocation

Key:

Server

Process:

result

invocation

Computer:

Server

Page | 28

The aspects of distributed systems that we wish to capture in our fundamental models
are intended to help us to discuss and reason about:

Interaction: Computation occurs within processes; the processes interact by passing

messages,
resulting in communication (information flow) and coordination (synchronization andordering
of activities) between processes. In the analysis and design of distributed systems we are
concerned especially with these interactions. The interaction model must reflect the factsthat
communication takes place with delays that are often of considerable duration, and that
the
accuracy with which independent processes can be coordinated is limited by thesedelays and by
the difficulty of maintaining the same notion of time across all the computers in a
distributed
system.
Failure: The correct operation of a distributed system is threatened whenever a fault

occurs in
any of the computers on which it runs (including software faults) or in the network thatconnects
them. Our model defines and classifies the faults. This provides a basis for the analysis

of their
potential effects and for the design of systems that are able to tolerate faults of eachtype while
continuing to run correctly.

Security: The modular nature of distributed systems and their openness exposes them to

attack by
both external and internal agents. Our security model defines and classifies the formsthat such

A number of placement strategies have evolved in response to this problem, but none
of them addresses the fundamental issue – the need to distribute shared resources
much more widely in order to share the computing and communication loads incurred
in accessing them amongst a much larger number of computers and network links.
The key insight that led to the development of peer-to-peer systems is that the
network and computing resources owned by the users of a service could also be put to
use to support that service. This has the useful consequence that the
resources available to run the service grow with the number of users.
Models of systems share some fundamental properties. In particular, all of them are
composed of
processes that communicate with one another by sending messages over a computer
network. All
of the models share the design requirements of achieving the performance and reliability
characteristics of processes and networks and ensuring the security of the resources in
the
system.

About their characteristics and the failures and security risks they might exhibit. In

general, such
a fundamental model should contain only the essential ingredients that need to considerin order
to understand and reason about some aspects of a system’s behaviour. The purpose

of such a
model is:
• To make explicit all the relevant assumptions about the systems we are modelling.
• To make generalizations concerning what is possible or impossible, given thoseassumptions.
The generalizations may take the form of general-purpose algorithms or desirable

properties that
are guaranteed. The guarantees are
dependent on logical analysis and, where appropriate, mathematical proof.

Page | 29

attacks may take, providing a basis for the analysis of threats to a system and for the design of
systems that are able to resist them.

Interaction model

Fundamentally distributed systems are composed of many processes, interacting in complex
ways. For example:

 Multiple server processes may cooperate with one another to provide a service; the
examples mentioned above were the Domain Name System, which partitions and

replicates its data at servers throughout the Internet, and Sun’s Network Information
Service, which keeps replicated copies of password files at several servers in a local area
network.
 A set of peer processes may cooperate with one another to achieve a common goal: for
example, a voice conferencing system that distributes streams of audio data in a similar
manner, but with strict real-time constraints.

Performance of communication channels • The communication channels in our model
are realized in a variety of ways in distributed systems – for example, by an
implementation of streams or by simple message passing over a computer network.
Communication over a computer network has the following performance characteristics
relating to latency, bandwidth and jitter:

The delay between the start of a message’s transmission from one process and the

beginning of
its receipt by another is referred to as latency. The latency includes:
– The time taken for the first of a string of bits transmitted through a network to reach its
destination. For example, the latency for the transmission of a message through asatellite link is
the time for a radio signal to travel to the satellite and back.

Most programmers will be familiar with the concept of an algorithm – a sequence of
steps to be taken in order to perform a desired computation. Simple programs are
controlled by algorithms in which the steps are strictly sequential. The behaviour of the
program and the state of the program’s variables is determined by them. Such a
program is executed as a single process. Distributed systems composed of multiple
processes such as those outlined above are more complex. Their behaviour and state
can be described by a distributed algorithm – a definition of the steps to be taken by
each of the processes of which the system is composed, including the transmission of
messages between them. Messages are transmitted between processes to transfer
information between them and to coordinate their activity.

Two significant factors affecting interacting processes in a distributed system:
• Communication performance is often a limiting characteristic.
• It is impossible to maintain a single global notion of time.

Page | 30

-

– The delay in accessing the network, which increases significantly when the network is heavily
loaded. For example, for Ethernet transmission the sending station waits for the network to be
free of traffic.

– The time taken by the operating system communication services at both the sending and the
receiving processes, which varies according to the current load on the operating systems.
• The bandwidth of a computer network is the total amount of information that can be
transmitted over it in a given time. When a large number of communication channels are using
the same network, they have to share the available bandwidth.

• Jitter is the variation in the time taken to deliver a series of messages. Jitter is relevant to
multimedia data. For example, if consecutive samples of audio data are played with differing
time intervals, the sound will be badly distorted.

Computer clocks and timing events • Each computer in a distributed system has its own
internal clock, which can be used by local processes to obtain the value of the current time.
Therefore two processes running on different computers can each associate timestamps with their
events. However, even if the two processes read their clocks at the same time, their local clocks
may supply different time values. This is because computer clocks drift from perfect time and,
more importantly, their drift rates differ from one another. The term clock drift rate refers to the
rate at which a computer clock deviates from a perfect reference clock. Even if the clocks on all
the computers in a distributed system are set to the same time initially, their clocks will
eventually vary quite significantly unless corrections are applied.

Two variants of the interaction model • In a distributed system it is hard to set limits on the
time that can be taken for process execution, message delivery or clock drift. Two opposing
extreme positions provide a pair of simple models – the first has a strong assumption of time and
the second makes no assumptions about time:
Synchronous distributed systems: Hadzilacos and Toueg define a synchronous distributed system
to be one in which the following bounds are defined:
• The time to execute each step of a process has known lower and upper bounds.
• Each message transmitted over a channel is received within a known bounded time.
• Each process has a local clock whose drift rate from real time has a known bound.

Asynchronous distributed systems: Many distributed systems, such as the Internet, are very
useful without being able to qualify as synchronous systems. Therefore we need an alternative
model. An asynchronous distributed system is one in which there are no bounds on:
• Process execution speeds – for example, one process step may take only a picosecond and
another a century; all that can be said is that each step may take an arbitrarily long time.
• Message transmission delays – for example, one message from process A to process B may be
delivered in negligible time and another may take several years. In other words, a message may
be received after an arbitrarily long time.
• Clock drift rates – again, the drift rate of a clock is arbitrary.

Page | 31

Z

A
t1 t2

receive receive
send

m3 m1 m2
receive receive receive
t3

Event ordering • In many cases, we are interested in knowing whether an event (sending
or receiving a message) at one process occurred before, after or concurrently with
another event at another process. The execution of a system can be described in terms of
events and their ordering despite the lack of accurate clocks. For example, consider the
following set of exchanges between a group of email users, X, Y, Z and A, on a mailing list:

1. User X sends a message with the subject Meeting.
2. Users Y and Z reply by sending a message with the subject Re: Meeting.
In real time, X’s message is sent first, and Y reads it and replies; Z then reads both X’s
message and Y’s reply and sends another reply, which references both X’s and Y’s
messages. But due to the independent delays in message delivery, the messages may be

delivered
as shown in the following figure and some users may view these two messages in thewrong
order.
send receive receive
X
1 4
m send
m2 1
Y 2 3 Physic
receive recei al
ve
time

send m receive

Page | 32

process p process q

Outgoing messagebuffer Incomingmessagebuffer
Arbitrary failures • The term arbitrary or Byzantine failure is used to describe the worst
possible failure semantics, in which any type of error may occur. For example, a process may set
wrong values in its data items, or it may return a wrong value in response to an invocation.
An arbitrary failure of a process is one in which it arbitrarily omits intended processing steps or

Failure model

In a distributed system both processes and communication channels may fail – that is, they may
depart from what is considered to be correct or desirable behaviour. The failure model defines
the ways in which failure may occur in order to provide an understanding of the effects of
failures. Hadzilacos and Toueg provide a taxonomy that distinguishes between the failures of
processes and communication channels. These are presented under the headings omission
failures, arbitrary failures and timing failures.
Omission failures • The faults classified as omission failures refer to cases when a process or
communication channel fails to perform actions that it is supposed to do.
Process omission failures: The chief omission failure of a process is to crash. When, say that a
process has crashed we mean that it has halted and will not execute any further steps of its
program ever. The design of services that can survive in the presence of faults can be simplified
if it can be assumed that the services on which they depend crash cleanly – that is, their
processes either function correctly or else stop. Other processes may be able to detect such a

crash by the fact that the process repeatedly fails to respond to invocation messages. However,
this method of crash detection relies on the use of timeouts – that is, a method in which one
process allows a fixed period of time for
something to occur. In an asynchronous system a timeout can indicate only that a process is not
responding – it may have crashed or may be slow, or the messages may not have arrived.

Communication omission failures: Consider the communication primitives send and receive. A
process p performs a send by inserting the message m in its outgoing message buffer. The
communication channel transports m to q’s incoming message buffer. Process q performs a
receive by taking m from its incoming message buffer and delivering it. The outgoing and
incoming message buffers are typically provided by the operating system.

Communication channel

Page | 33

takes unintended processing steps. Arbitrary failures in processes cannot be detected
by seeing whether the process responds to invocations, because it might arbitrarily
omit to reply.

Communication channels can suffer from arbitrary failures; for example, message

contents may
be corrupted, nonexistent messages may be delivered or real messages may bedelivered more
than once. Arbitrary failures of communication channels are rare because the

communication
software is able to recognize them and reject the faulty
messages. For example, checksums are used to detect corrupted messages, and
message
sequence numbers can be used to detect nonexistent and duplicated messages.

Timing failures • Timing failures are applicable in synchronous distributed systems
where time limits are set on process execution time, message delivery time and clock
drift rate. Timing failures are listed in the following figure. Any one of these failures may
result in responses being unavailable to clients within a specified time interval.
In an asynchronous distributed system, an overloaded server may respond too slowly,
but we cannot say that it has a timing failure since no guarantee has been offered.
Real-time operating
systems are designed with a view to providing timing guarantees, but they are more
complex to
design and may require redundant hardware.
Most general-purpose operating systems such as UNIX do not have to meet real-time
constraints.

Masking failures • Each component in a distributed system is generally constructed from

a
collection of other components. It is possible to construct reliable services fromcomponents that
exhibit failures. For example, multiple servers that hold replicas of data can continue to

provide a
service when one of them crashes. A knowledge of the failure characteristics of acomponent can
enable a new service to be designed to mask the failure of the components on which it

depends.
A service masks a failure either by hiding it altogether or by converting it into a moreacceptable
type of failure. For an example of the latter, checksums are used to mask corrupted

messages,
effectively converting an arbitrary failure into an omission failure. The omission failurescan be
hidden by using a protocol that retransmits messages that do not arrive at their

destination Even

Page | 34

Reliability of one-to-one communication • Although a basic communication channel can
exhibit the omission failures described above, it is possible to use it to build a
communication service that masks some of those failures.

The term reliable communication is defined in terms of validity and integrity as follows:

Validity: Any message in the outgoing message buffer is eventually delivered to the incoming
message buffer.
Integrity: The message received is identical to one sent, and no messages are delivered twice.

The threats to integrity come from two independent sources:
• Any protocol that retransmits messages but does not reject a message that arrives twice.
Protocols can attach sequence numbers to messages so as to detect those that are delivered twice.

• Malicious users that may inject spurious messages, replay old messages or tamper with
messages. Security measures can be taken to maintain the integrity property in the face of such
attacks.

Security model
The sharing of resources as a motivating factor for distributed systems, and in Section 2.3 we
described their architecture in terms of processes, potentially encapsulating higher-level
abstractions such as objects, components or services, and providing access to them through
interactions with other processes. That architectural model provides the basis for our security
model:
the security of a distributed system can be achieved by securing the processes and the channels
used for their interactions and by protecting the objects that they encapsulate against
unauthorized access.

Protection is described in terms of objects, although the concepts apply equally well to resources
of all types
Protecting objects :
Server that manages a collection of objects on behalf of some users. The users can run client
programs that send invocations to the server to perform operations on the objects. The server
carries out the operation specified in each invocation and sends the result to the client.
Objects are intended to be used in different ways by different users. For example, some objects
may hold a user’s private data, such as their mailbox, and other objects may hold shared data
such as web pages. To support this, access rights specify who is allowed to perform the
operations of an object – for example, who is allowed to read or to write its state.

Page | 35

Principal (user) Network Principal (server)

Defeating security threats
Cryptography and shared secrets: Suppose that a pair of processes (for example, a
particular client and a particular server) share a secret; that is, they both know the secret
but no other process in the distributed system knows it. Then if a message exchanged by
that pair of processes includes information that proves the sender’s knowledge of the
shared secret, the recipient knows for sure that the sender was the other process in the
pair. Of course, care must be taken to ensure that the shared secret is not revealed to
an enemy.

Cryptography is the science of keeping messages secure, and encryption is the process of
scrambling a message in such a way as to hide its contents. Modern cryptography isbased on
encryption algorithms that use secret keys – large numbers that are difficult to guess – to
transform data in a manner that can only be reversed with knowledge of thecorresponding
decryption key.

Authentication: The use of shared secrets and encryption provides the basis for the
authentication of messages – proving the identities supplied by their senders. The basic
authentication technique is to include in a message an encrypted portion that contains

enough of
the contents of the message to guarantee its authenticity. The authentication portion ofa request
to a file server to read part of a file, for example, might include a representation of the
requesting
principal’s identity, the identity of the file and the date and time of the request, allencrypted with

Securing processes and their interactions • Processes interact by sending messages.
The messages are exposed to attack because the network and the communication service
that they use
are open, to enable any pair of processes to interact. Servers and peer processes

expose their
interfaces, enabling invocations to be sent to them by any other process.
The enemy • To model security threats, we postulate an enemy (sometimes also

known as the
adversary) that is capable of sending any message to any process and reading orcopying any
message sent between a pair of processes, as shown in the following figure. Such attacks

can be
made simply by using a computer connected to a network to run a program that readsnetwork
messages addressed to other computers on the network, or a program that generates
messages
that make false requests to services, purporting to come from authorized users. Theattack may
come from a computer that is legitimately connected to the network or from one that is
connected in an unauthorized manner. The threats from a potential enemy include threatsto
processes and threats to communication channels.

Client
result

invocation

Access rights

Server

Object

Page | 36

Thi
s
chap
ter

Middle
ware

layers

Communication aspects of middleware, although the principles discussed are more
widely applicable. This one is concerned with the design of the components shown in the
darker layer in the following figure.

a secret key shared between the file server and the requesting process. The server
would decrypt this and check that it corresponds to the unencrypted details specified in
the request.

Secure channels: Encryption and authentication are used to build secure channels as

a service
layer on top of existing communication services. A secure channel is a communicationchannel
connecting a pair of processes, each of which acts on behalf of a principal, as shown in

the
following figure. A secure channel has the following properties:
• Each of the processes knows reliably the identity of the principal on whose behalf

the other
process is executing. Therefore if a client and server communicate via a secure channel,the
server knows the identity of the principal behind the invocations and can check their

access
rights before performing an operation. This enables the server to protect its objectscorrectly and
allows the client to be sure that it is receiving results from a bona fide server.

• A secure channel ensures the privacy and integrity (protection against tampering) of

the data
transmitted across it.
• Each message includes a physical or logical timestamp to prevent messages from being
replayed or reordered.

Applications,services

RMI and RPC

request-replyprotocol

marshalling and external data representation

UDP and TCP

Page | 37

 UNIT II

Time and Global States: Introduction, Clocks, Events and Process states, Synchronizing physical clocks, Log
time and Logical clocks, Global states, Distributed Debugging.
Coordination and Agreement: Introduction, Distributed mutual exclusion, Elections, Multicast Communicat
Consensus and Related problems.

CLOCKS, EVENTS AND PROCESS STATES

Each process executes on a single processor, and the processors do not share memory (Chapter 6
briefly considered the case of processes that share memory). Each process pi in has a state si that, in
general, it transforms as it executes. The process’s state includes the values of all the variables within
it. Its state may also include the values of any objects in its local operating system environment that it
affects, such as files. We assume that processes cannot communicate with one another in any way
except by sending messages through the network.
So, for example, if the processes operate robot arms connected to their respective nodes in the
system, then they
are not allowed to communicate by shaking one another’s robot hands! As each process pi executes it
takes a series of actions, each of which is either amessage send or receive operation, or an operation
that transforms pi ’s state – one that
changes one or more of the values in si. In practice, we may choose to use a high-leveldescription of
the actions, according to the application. For example, if the processes in are engaged in an
eCommerce application, then the actions may be ones such as ‘client dispatched order message’ or
‘merchant server recorded transaction to log’.
We define an event to be the occurrence of a single action that a process carries out as it executes – a
communication action or a state-transforming action. The sequence of events within a single process
pi can be placed in a single, total ordering, which we denote by the relation i between the events.
That is, if and only if the event e occurs before e at pi . This ordering is well defined, whether or not
the process is multithreaded,
since we have assumed that the process executes on a single processor. Now we can define the
history of process pi to be the series of events that take place within it, ordered as we have described
by the relation Clocks • We have seen how to order the events at a process, but not how to timestamp
them – i.e., to assign to them a date and time of day. Computers each contain their own physical
clocks. These clocks are electronic devices that count oscillations occurring in a crystal at a definite
frequency, and typically divide this count and store the result in a counter register. Clock devices can
be programmed to generate interrupts at regular intervals in order that, for example, timeslicing can
be implemented; however, we shall not concern ourselves with this aspect of clock operation.
The operating system reads the node’s hardware clock value, Hit , scales it and adds an offset so as to
produce a software clock Cit = Hit + that approximately measures real, physical time t for process pi
. In other words, when the real time in an absolute frame of reference is t, Cit is the reading on the
software clock. For example,
Cit could be the 64-bit value of the number of nanoseconds that have elapsed at time t since a
convenient reference time. In general, the clock is not completely accurate, so Cit will differ from
t. Nonetheless, if Ci behaves sufficiently well (we shall examine the notion of clock correctness
shortly), we can use its value to timestamp any event at pi . Note that successive events will

Page | 38

correspond to different timestamps only if the clock resolution – the period between
updates of the clock value – is smaller than the time interval between successive events.
The rate at which events occur depends on such factors as the length of the processor
instruction cycle.
Clock skew and clock drift • Computer clocks, like any others, tend not to be in perfect
agreement

Coordinated Universal Time • Computer clocks can be synchronized to external sources of

highly
accurate time. The most accurate physical clocks use atomic oscillators, whose
drift rate is about one part in 1013. The output of these atomic clocks is used as the

standard second
has been defined as 9,192,631,770 periods of transition between the two hyperfine levels ofthe
ground state of Caesium-133 (Cs133).
Seconds and years and other time units that we use are rooted in astronomical time. Theywere
originally defined in terms of the rotation of the Earth on its axis and its rotation about the Sun.
However, the period of the Earth’s rotation about its axis is gradually getting longer, primarily
because of tidal friction; atmospheric effects and convection currents within the Earth’s core

also
cause short-term increases and decreases in the period. So astronomical time and atomictime have a
tendency to get out of step.

Coordinated Universal Time – abbreviated as UTC (from the French equivalent) – is an

international
standard for timekeeping. It is based on atomic time, but a so-called ‘leap second’ isinserted – or,
more rarely, deleted – occasionally to keep it in step with astronomical time. UTC signals are
synchronized and broadcast regularly from landbased
radio stations and satellites covering many parts of the world. For example, in the USA, the
radio
station WWV broadcasts time signals on several shortwave frequencies.
Satellite sources include the Global Positioning System (GPS).Receivers are available
commercially.
Compared with ‘perfect’ UTC, the signals received from land-based stations have an accuracyon the
order of 0.1–10 milliseconds,
depending on the station used. Signals received from GPS satellites are accurate to about 1
microsecond. Computers with receivers attached can synchronize their clocks with these
timing
signals.
Synchronizing physical clocks
In order to know at what time of day events occur at the processes in our distributed system –for
example, for accountancy purposes – it is necessary to synchronize the processes’ clocks, Ci ,

with an
authoritative, external source of time. This is external synchronization. And if the clocks Ci are
synchronized with one another to a known degree of accuracy, then we can measure the
interval
between two events occurring at different computers by appealing to their local clocks, eventhough
they are not necessarily synchronized to an external source of time. This is internal
synchronization.We define these two modes of synchronization more closely as follows, overan
interval

Page | 39

have been suggested. It is common to define a hardware clock H to be correct
if its drift rate falls within a known bound (a value derived from one supplied by the manufacturer,
such as 10–6 seconds/second).
This means that the error in measuring the interval between real times t and t (t t) is bounded:
1 – t – t Ht – Ht 1 + t – t
This condition forbids jumps in the value of hardware clocks (during normal operation). Sometimes
we also require our software clocks to obey the condition but a weaker condition of monotonicity may
suffice. Monotonicity is the condition that a clock C only ever advances: t t Ct Ct For example, the
UNIX make facility is a tool that is used to compile only those source files that have been modified
since they were last compiled. The modification dates of each corresponding pair of source and object
files are compared to determine this condition. If a computer whose clock was running fast set its
clock back after compiling a source file but before the file was changed, the source file might appear
to have been modified prior to the compilation. Erroneously, make will not recompile the source file.
We can achieve monotonicity despite the fact that a clock is found to be running fast. We need only
change the rate at which updates are made to the time as given to applications. This can be achieved
in software without changing the rate at which the underlying hardware clock ticks – recall that Cit =
Hit + , where we are free to
choose the values of and . A hybrid correctness condition that is sometimes applied is to require that
a clock
obeys the monotonicity condition, and that its drift rate is bounded between synchronization points,
but to allow the clock value to jump ahead at synchronization points.
A clock that does not keep to whatever correctness conditions apply is defined to be faulty. A clock’s
crash failure is said to occur when the clock stops ticking altogether;
any other clock failure is an arbitrary failure. A historical example of an arbitrary failure is that of a
clock with the ‘Y2K bug’, which broke the monotonicity condition by registering the date after 31
December 1999 as 1 January 1900 instead of 2000; another example is a clock whose batteries are
very low and whose drift rate suddenly becomes
very large.
Note that clocks do not have to be accurate to be correct, according to the definitions. Since the goal
may be internal rather than external synchronization, the criteria for correctness are only concerned
with the proper functioning of the clock’s ‘mechanism’, not its absolute setting. We now describe
algorithms for external synchronization and for internal
synchronization.
Logical time and logical clocks
From the point of view of any single process, events are ordered uniquely by times shown on the
local clock. However, as Lamport [1978] pointed out, since we cannot synchronize clocks perfectly
across a distributed system, we cannot in general use physical time to find out the order of any
arbitrary pair of events occurring within it. In general, we can use a scheme that is similar to physical
causality but that applies in distributed systems to order some of the events that occur at different
processes. This ordering is based on two simple and intuitively obvious points: • If two events
occurred at the same process pi i = 1 2 N , then they occurred in the order in which pi observes them
– this is the order i that we defined above.• Whenever a message is sent between processes, the event
of sending the message occurred before the event of receiving the message.
Lamport called the partial ordering obtained by generalizing these two relationships the
happened-before relation. It is also sometimes known as the relation of causal ordering or potential
causal ordering.
We can define the happened-before relation, denoted by , as follows: HB1: If processpi : e i e', then e
e .
HB2: For any message m, send(m) receive(m) – where send(m) is the event of sending the message,
and receive(m)

Page | 40

Clocks, Events and Process States

• A distributed system consists of a collection P of N processes pi, i = 1,2,… NEach process pi
has a state si consisting of its variables (which it transforms as it executes)
Processes communicate only by messages (via a network)
• Actions of processes: Send, Receive, change own state
• Event: the occurrence of a single action that a process carries out as it executes
– Events at a single process pi, can be placed in a total ordering denoted by the relation →i
between the events. i.e.e →i e’if and only if event e occurs before event e’ at process pi
• A history of process pi: is a series of events ordered by →i
– history(pi) = hi =<ei0, ei1, ei2, …>

Clocks

To timestamp events, use the computer‘s clock • At real time, t, the OS reads the time on the
computer‘s hardware clock Hi(t)
• It calculates the time on its software clock Ci(t)=αHi(t) + β

– e.g. a 64 bit value giving nanoseconds since some base time

is the event of receiving it. HB3: If e, e and e are events such that e e and e e , then e
e .

Totally ordered logical clocks • Some pairs of distinct events, generated by different processes, have
numerically identical Lamport timestamps. However, we can create a total order on the set of events
– that is, one for which all pairs of distinct events are ordered – by taking into account the identifiers
of the processes at which events occur. If e is an event occurring at pi with local timestamp Ti , and e
is an event occurring at pj with local timestamp Tj , we define the global logical timestamps for these
events to be Ti i and Tj j , respectively. And we define Ti i Tj j if and only if either Ti Tj , or Ti = Tj
and i j . This ordering has no general physical significance
(because process identiiers are arbitrary), but it is sometimes useful. Lamport used it, for example, to
order the entry of processes to a critical section.

Vector clocks • Mattern [1989] and Fidge [1991] developed vector clocks to overcome the
shortcoming of Lamport’s clocks: the fact that from Le Le we cannot conclude that e e.
. A vector clock for a system of N processes is an array of N
integers. Each process keeps its own vector clock, Vi , which it uses to timestamp local events. Like
Lamport timestamps, processes piggyback vector timestamps on the messages they send to one
another, and there are simple rules for updating the clocks:
VC1: Initially, Vij = 0 , for i j = 1 2 N .
VC2: Just before pi timestamps an event, it sets Vii :=Vii + 1. VC3:
pi includes the value t = Vi in every message it sends.
VC4: When pi receives a timestamp t in a message, it sets Vij := maxVij tj , for j = 1 2 N . Taking the
componentwise maximum of two vector timestamps in this way is known as a merge operation.For a
vector clock Vi , Vii is the number of events that pi has timestamped, and Vij j i is the number of
events that have occurred at pj that have potentially affected pi . (Process pj may have timestamped
more events by this point, but no information has flowed to pi about them in messages as yet.)

Page | 41

– Clock resolution: period between updates of the clock value

• In general, the clock is not completely accurate – but if Ci behaves well enough, it can be used
to timestamp events at pi
Skew between computer clocks in a distributed system

Computer clocks are not generally in perfect agreement
• Clock skew: the difference between the times on two clocks (at any instant)
• Computer clocks use crystal-based clocks that are subject to physical variations
– Clock drift: they count time at different rates and so diverge (frequencies of oscillation differ)
– Clock drift rate: the difference per unit of time from some ideal reference clock
– Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).
– High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

Coordinated Universal Time (UTC)

• UTC is an international standard for time keeping
– It is based on atomic time, but occasionally adjusted to astronomical time
– International Atomic Time is based on very accurate physical clocks (drift rate 10-13)
• It is broadcast from radio stations on land and satellite (e.g.GPS)
• Computers with receivers can synchronize their clocks with these timing signals (by requesting
time from GPS/UTC source)
– Signals from land-based stations are accurate to about 0.1-10 millisecond
– Signals from GPS are accurate to about 1 microsecond
Synchronizing physical clocks

Two models of synchronization
• External synchronization: a computer‘s clock Ci is synchronized with an external authoritative
time source S, so that:
– |S(t) - Ci(t)| < D for i = 1, 2, …N over an interval, I of real time
– The clocks Ci are accurate to within the bound D.
• Internal synchronization: the clocks of a pair of computers are synchronized with one another
so that:
– | Ci(t) - Cj(t)| < D for i = 1, 2, … N over an interval, I of real time
– The clocks Ci and Cj agree within the bound D.
Internally synchronized clocks are not necessarily externally synchronized, as they may drift
collectively

Page | 42

– if the set of processes P is synchronized externally within a bound D, it is also internally
synchronized within bound 2D (worst case polarity)

Clock correctness
• Correct clock: a hardware clock H is said to be correct if its drift rate is within a bound ρ > 0
(e.g. 10-6 secs/ sec)
This means that the error in measuring the interval between real times t and
t’ is bounded:
– (1 - ρ) (t’ - t) ≤ H(t’) - H(t) ≤ (1 + ρ) (t’ - t) (where t’>t) Which forbids jumps in time
readings of hardware clocks

– Clock monotonicity: weaker condition of correctness – t' > t ⇒ C(t’) > C(t) e.g. required by Unix
make
– A hardware clock that runs fast can achieve monotonicity by adjusting the values of α and β
such that Ci(t)= αHi(t) + β
– Faulty clock: a clock not keeping its correctness condition crash failure - a clock stops ticking
• arbitrary failure - any other failure e.g. jumps in time; Y2K bug

Synchronization in a synchronous system

A synchronous distributed system is one in which the following bounds are defined

The time to execute each step of a process has known lower and upper bounds each message
transmitted over a channel is received within a knownbounded time (min and max) each process has a
local clock whose drift rate from real time has a known bound
Internal synchronization in a synchronous system

 One process p1 sends its local time t to process p2 in a message m

 p2 could set its clock to t + Ttrans where Ttrans is the time to transmit m

 Ttrans is unknown but min ≤ Ttrans ≤ max

 uncertainty u = max-min. Set clock to t + (max - min)/2 then skew ≤ u/2
Cristian‘s method for an asynchronous system


 A time server S receives signals from a UTC source

 Process p requests time in mr and receives t in mt from S

 p sets its clock to t + Tround/2

 Accuracy ± (Tround/2 - min) :

 because the earliest time S puts t in message mt is min after p sent mr

 the latest time was min before mt arrived at p

 the time by S‘s clock when mt arrives is in the range [t+min, t + Tround - min]

 the width of the range is Tround + 2min

Page | 43

NTP - synchronization of servers


 The synchronization subnet can reconfigure if failures occur

 a primary that loses its UTC source can become a secondary

 a secondary that loses its primary can use another primary

 Modes of synchronization for NTP servers:

 Multicast

 A server within a high speed LAN multicasts time to others which

set clocks assuming some delay (not very accurate)
 Procedure call

 A server accepts requests from other computers (like
Cristian‘s algorithm)

The Berkeley algorithm


 Problem with Cristian‘s algorithm

 a single time server might fail, so they suggest the use of a
group of synchronized servers
 it does not deal with faulty servers

 Berkeley algorithm (also 1989)

 An algorithm for internal synchronization of a group of computers

 A master polls to collect clock values from the others (slaves)

 The master uses round trip times to estimate the slaves‘ clock values

 It takes an average (eliminating any above some average round trip
time or with faulty clocks)
 It sends the required adjustment to the slaves (better than sending
the time which depends on the round trip time)
 Measurements

 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5

 If master fails, can elect a new master to take over (not in bounded time)
Network Time Protocol (NTP)
 A time service for the Internet - synchronizes clients to UTC Reliability from redundant paths,
scalable, authenticates time sources Architecture
 Primary servers are connected to UTC sources

 Secondary servers are synchronized to primary servers

 Synchronization subnet - lowest level servers in users‘ computers

 strata: the hierarchy level

Page | 44

 Higher accuracy. Useful if no hardware multicast.
Messages exchanged between a pair of NTP peers


 All modes use UDP

 Each message bears timestamps of recent events:

 Local times of Send and Receive of previous message

 Local times of Send of current message

 Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)

 Estimations of clock offset and message delay

 For each pair of messages between two servers, NTP estimates an offset oi (between the
two clocks) and a delay di (total time for the two messages, which take t and t‘)
 Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t‘ - o

 This gives us (by adding the equations) : di = t + t‘ = Ti-2 - Ti-3 + Ti - Ti-1

 Also (by subtracting the equations)
= oi + (t‘ - t)/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2
 Using the fact that t, t‘>0 it can be shown that

 oi - di /2 ≤ o ≤ oi + di /2 .

 Thus oi is an estimate of the offset and di is a measure of the accuracy

 Data filtering


 NTP servers filter pairs <oi, di>, estimating reliability from variation (dispersions),
allowing them to select peers; and synchronization based on the lowest dispersion or min
di ok

 A relatively high filter dispersion represents relatively unreliable data

 Accuracy of tens of milliseconds over Internet paths (1 ms on LANs)
Logical time and logical clocks


 Instead of synchronizing clocks, event ordering can be used


 If two events occurred at the same process pi (i = 1, 2, … N) then theyoccurred in the
order observed by pi, that is order →i
 when a message, m is sent between two processes, send(m) happened before receive(m)

 Lamport[1978] generalized these two relationships into the happened-before relation:
e →i e'
 HB1: if e →i e' in process pi, then e → e'

 HB2: for any message m, send(m) → receive(m)

 HB3: if e → e' and e' → e'', then e → e''

Page | 45

Lamport‘s logical clocks


 Each process pi has a logical clock Li
o a monotonically increasing software counter
o not related to a physical clock

 Apply Lamport timestamps to events with happened-before relation

o LC1: Li is incremented by 1 before each event at process pi
o LC2:
o when process pi sends message m, it piggybacks t = Li

o when pj receives (m,t), it sets Lj := max(Lj, t) and applies LC1 before
timestamping the event receive (m)
 e →e‘ implies L(e)<L(e‘), but L(e)<L(e') does not imply e→e‘

Totally ordered logical clocks

 Some pairs of distinct events, generated by different processes, may have numerically

identical Lamport timestamps
 Different processes may have same Lamport time

 Totally ordered logical clocks

 If e is an event occurring at pi with local timestamp Ti, and if e‘ is an event occurring at pj
with local timestamp Tj

Page | 46
































Define global logical timestamps for the events to be (Ti, i) and (Tj, j)
Define (Ti, i) < (Tj, j) iff
Ti < Tj or
Ti = Tj and i < j

No general physical significance since process identifiers are arbitrary

Vector clocks
 Shortcoming of Lamport clocks:

 L(e) < L(e') doesn't imply e → e'

 Vector clock: an array of N integers for a system of N processes

 Each process keeps its own vector clock Vi to timestamp local events

 Piggyback vector timestamps on messages

 Rules for updating vector clocks:

 Vi[i]] is the number of events that pi has timestamped

 Viji] (j≠ i) is the number of events at pj that pi has been affected
by VC1: Initially, Vi[j] := 0 for pi, j=1.. N (N processes)
 VC2: before pi timestamps an event, Vi[i] := Vi[
i]+1 VC3: pi piggybacks t = Vi on every message
it sends


 VC4: when pi receives a timestamp t, it sets Vi[j] := max(Vi[j] , t[j]) for

 j=1..N (merge operation)

Compare vector timestamps
V=V‘ iff V[j] = V‘[j] for j=1..N
V>=V‘ iff V[j] <= V‘[j] for j=1..N
V<V‘ iff V<= V‘ ^ V!=V‘
Figure 11.7 shows
a→f since V(a) < V(f)
c || e since neither V(c) <= V(e) nor V(e) <= V(c)

Global states

How do we find out if a particular property is true in a distributed system? For examples,
we will look at:
Distributed Garbage Collection
Deadlock Detection
Termination Detection
Debugging

Page | 47

Deadlock Detection

 A distributed deadlock occurs when each of a collection of processes waits for another
process to send it a message, and there is a cycle in the graph of the waits-for relationship
 In figure 11.8b, both p1 and p2 wait for a message from the other, so both are blocked and
the system cannot continue

Distributed Garbage Collection

 Objects are identified as garbage when there are no longer any references to them in the
system
 Garbage collection reclaims memory used by those objects

 In figure 11.8a, process p2 has two objects that do not have any references to other objects,
but one object does have a reference to a message in transit. It is not garbage, but the other
p2 object is

 Thus we must consider communication channels as well as object references to
determine unreferenced objects

Page | 48

www.Vidyarthiplus.com

Termination Detection


 It is difficult to tell whether a distributed algorithm has terminated. It is not enough to
detect whether each process has halted
 In figure 11.8c, both processes are in passive mode, but there is an activation request
in the network
 Termination detection examines multiple states like deadlock detection, except that a
deadlock may affect only a portion of the processes involved, while termination detection
must ensure that all of the processes have completed

Distributed Debugging


 Distributed processes are complex to debug. One of many possible problems is that
consistency restraints must be evaluated for simultaneous attribute values in multiple

processes at different instants of time.

 All four of the distributed problems discussed in this section have particular solutions, but
all of them also illustrate the need to observe global states. We will now look at a general
approach to observing global states.


 Without global time identified by perfectly synchronized clocks, the ability to identify
successive states in an individual process does not translate into the ability to identify

successive states in distributed processes

 We can assemble meaningful global states from local states recorded at different local times

in many circumstances, but must do so carefully and recognize limits to our capabilities
 A general system P of N processes pi (i=1..N)

 pi‘s history: history(pi)=hi=<ei0, ei1, ei2, …>

 finite prefix of pi‘s history:
hi k= <ei0, ei1, ei2, …, eik>
 state of pi immediately before the kth event occurs: sik

 global history H=h1 U h2 U…U hN

 A cut of the system‘s execution is a subset of its global history that is a union of prefix of

process histories C=h1c1 U h2c2 U…U hNcN


 The following figure gives an example of an inconsistent cutic and a consistent cutcc. The
distinguishing characteristic is that
cutic includes the receipt of message m1 but not the sending of it while

http://www.vidyarthiplus.com/
http://www.vidyarthiplus.com/

Page | 49

sending and receipt of the message m2.
A consistent cut cannot violate temporal causality by implying that a result occurred before
its cause, as in message m1 being received before the cut and being sent after the cut.

Global state predicates

 A Global State Predicate is a function that maps from the set of global process states to True
or False.
 Detecting a condition like deadlock or termination requires evaluating a Global State
Predicate.
 A Global State Predicate is stable: once a system enters a state where it is true, such as
deadlock or termination, it remains true in all future states reachable from that state.
 However, when we monitor or debug an application, we are interested in non stable
predicates.

The Snapshot Algorithm


 Chandy and Lamport defined a snapshot algorithm to determine global states of distributed
systems
 The goal of a snapshot is to record a set of process and channel states (a snapshot) for a set
of processes so that, even if the combination of recorded states may not have occurred at the
same time, the recorded global state is consistent

 The algorithm records states locally; it does not gather global states at one site.

 The snapshot algorithm has some assumptions

 Neither channels nor processes fail

 Reliable communications ensure every message sent is received exactly once

 Channels are unidirectional

 Messages are received in FIFO order

 There is a path between any two processes

 Any process may initiate a global snapshot at any time

 Processes may continue to function normally during a snapshot



Page | 50

Example
•Figure 11.11 shows an initial state for two processes.

 •Figure 11.12 shows four successive states reached and identified after state transitions
by the two processes.
 •Termination: it is assumed that all processes will have recorded their states and channel
states a finite time after some process initially records its state.

Characterizing a state

 A snapshot selects a consistent cut from the history of the execution. Therefore the state
recorded is consistent. This can be used in an ordering to include or exclude states that
have or have not recorded their state before the cut. This allows us to distinguish events as
pre-snap or post-snap events.
 The reachability of a state (figure 11.13) can be used to determine stable predicates.

messages. Outgoing channels are those it uses to send messages. Each process records its
state and for each incoming channel a set of messages sent to it. The process records
foreach channel, any messages sent after it recorded its state and before the sender recorded its
own state. This approach can differentiate between states in terms of messages transmitted
but not yet received

The algorithm uses special marker messages, separate from other messages, which prompt
the receiver to save its own state if it has not done so and which can be used to determine
which messages to include in the channel state.
The algorithm is determined by two rules





Page | 51

Coordination And Agreement

Introduction


 Fundamental issue: for a set of processes, how to coordinate their actions or to agree on
one or more values?
 even no fixed master-slave relationship between the components

 Further issue: how to consider and deal with failures when designing algorithms

 Topics covered

 mutual exclusion

 how to elect one of a collection of processes to perform a special role

 multicast communication

 agreement problem: consensus and byzantine agreement
Failure Assumptions and Failure Detectors


 Failure assumptions of this chapter

 Reliable communication channels

 Processes only fail by crashing unless state otherwise

 Failure detector: object/code in a process that detects failures of other processes

 unreliable failure detector

 One of two values: unsuspected or suspected

 Evidence of possible failures

 Example: most practical systems

 Each process sends ―alive/I‘m here‖ message to everyone else


Page | 52

12.2 Distributed Mutual Exclusion

 Process coordination in a multitasking OS


 Race condition: several processes access and manipulate the same data concurrently
and the outcome of the execution depends on the particular order in which the access
take place

 critical section: when one process is executing in a critical section, no other process is
to be allowed to execute in its critical section
 Mutual exclusion: If a process is executing in its critical section, then no other processes
can be executing in their critical sections
 Distributed mutual exclusion

 Provide critical region in a distributed environment

 message passing

 for example, locking files, locked daemon in UNIX (NFS is stateless, no file-locking at
the NFS level)
Algorithms for mutual exclusion

 Problem: an asynchronous system of N processes

 processes don't fail

 message delivery is reliable; not share variables

 only one critical region

 application-level protocol: enter(), resourceAccesses(), exit()

 Requirements for mutual exclusion

 Essential

 [ME1] safety: only one process at a time

 [ME2] liveness: eventually enter or exit

 Additional

 [ME3] happened-before ordering: ordering of enter() is the same as HB ordering

 Performance evaluation

 overhead and bandwidth consumption: # of messages sent

 client delay incurred by a process at entry and exit


 throughput measured by synchronization delay: delay between one's exit and next's
entry
A central server algorithm

 server keeps track of a token---permission to enter critical region

 a process requests the server for the token

the server grants the token if it has the token

Page | 53

A central server algorithm: discussion

 Properties

 safety, why?

 liveness, why?

 HB ordering not guaranteed, why?

 Performance

 enter overhead: two messages (request and grant)

 enter delay: time between request and grant

 exit overhead: one message (release)

 exit delay: none

 synchronization delay: between release and grant

 centralized server is the bottleneck
A ring-based algorithm
 Arrange processes in a logical ring to rotate a token

 Wait for the token if it requires to enter the critical section

 The ring could be unrelated to the physical configuration

 pi sends messages to p(i+1) mod N

 when a process requires to enter the critical section, waits for the token

 when a process holds the token

 If it requires to enter the critical section, it can enter

 when a process releases a token (exit), it sends to its neighbor


 If it doesn‘t, just immediately forwards the token to its neighbor

An algorithm using multicast and logical clocks

 Multicast a request message for the token (Ricart and Agrawala [1981])

 enter only if all the other processes reply

 totally-ordered timestamps: <T, pi >

 Each process keeps a state: RELEASED, HELD, WANTED

 if all have state = RELEASED, all reply, a process can hold the token and enter

 if a process has state = HELD, doesn't reply until it exits

 if more than one process has state = WANTED, process with the lowest timestamp will get
all
 N-1 replies first

Page | 54

An algorithm using multicast: discussion

 •Properties

 safety, why?

 liveness, why?

 HB ordering, why?

 Performance

 bandwidth consumption: no token keeps circulating

 entry overhead: 2(N-1), why? [with multicast support: 1 + (N -1) = N]

 entry delay: delay between request and getting all replies

 exit overhead: 0 to N-1 messages

 exit delay: none


h i i d l d l f (l l f h i h ld)

Page | 55

Maekawa‘s voting algorithm

 •Observation: not all peers to grant it access

 Only obtain permission from subsets, overlapped by any two processes

 •Maekawa‘s approach

 subsets Vi,Vj for process Pi, Pj

 Pi ∈ Vi, Pj ∈ Vj

 Vi ∩ Vj ≠ ∅ , there is at least one common member

 subset |Vi|=K, to be fair, each process should have the same size

 Pi cannot enter the critical section until it has received all K reply messages

 Choose a subset

 Simple way (2√N): place processes in a √N by √N matrix and let Vi be the union of the
row and column containing Pi
 If P1, P2 and P3 concurrently request entry to the critical section, then its possible that
each process has received one (itself) out of two replies, and none can proceed
 adapted and solved by [Saunders 1987]

Page | 56

Elections

Election: choosing a unique process for a particular role
 All the processes agree on the unique choice

 For example, server in dist. Mutex assumptions

 Each process can call only one election at a time multiple concurrent elections can be called
by different processes
 Participant: engages in an election each process pi has variable electedi = ? (don't know)
initially process with the largest identifier wins.
 The (unique) identifier could be any useful value Properties

 [E1] electedi of a ―participant‖ process must be P (elected process=largestid) or ⊥
(undefined)
 [E2] liveness: all processes participate and eventually set electedi != ⊥ (or crash)
Performance
 overhead (bandwidth consumption): # of messages

 turnaround time: # of messages to complete an election
A ring-based election algorithm
 Arrange processes in a logical ring
o pi sends messages to p(i+1) mod N
o It could be unrelated to the physical configuration
o Elect the coordinator with the largest id
o Assume no failures

 Initially, every process is a non-participant. Any process can call an election
o Marks itself as participant
o Places its id in an election message
o Sends the message to its neighbor
o Receiving an election message

 if id > myid, forward the msg, mark participant

 if id < myid
o non-participant: replace id with myid: forward the msg, mark participant
o participant: stop forwarding (why? Later, multiple elections)

 if id = myid, coordinator found, mark non-participant, electedi := id, send elected
o message with myid
o Receiving an elected message

 id != myid, mark non-participant, electedi := id forward the msg

 if id = myid, stop forwarding

Page | 57

Figure 12.7 A ring-based election in progress

 Receiving an election message:
if id > myid, forward the msg, mark participant
if id < myid
non-participant: replace id with myid: forward the msg, mark participant
participant: stop forwarding (why? Later, multiple elections)
if id = myid, coordinator found, mark non-participant, electedi := id, send elected message
with
myid
Receiving an elected message: – id != myid, mark non-participant,
electedi := id forward the msg
if id = myid, stop forwarding

A ring-based election algorithm: discussion


 •Properties

 safety: only the process with the largest id can send an elected message

 liveness: every process in the ring eventually participates in the election; extra
elections are stopped
 Performance

 one election, best case, when?

 N election messages

 N elected messages

 turnaround: 2N messages

 one election, worst case, when?

 2N - 1 election messages

 N elected messages

 turnaround: 3N - 1 messages














Page | 58

The bully election algorithm
•Assumption
– Each process knows which processes have higher identifiers, and that it can communicate with
all such processes
•Compare with ring-based election
– Processes can crash and be detected by timeouts
• synchronous
• timeout T = 2Ttransmitting (max transmission delay) + Tprocessing (max processing delay)
•Three types of messages
– Election: announce an election
– Answer: in response to Election
– Coordinator: announce the identity of the elected process
The bully election algorithm: howto
• Start an election when detect the coordinator has failed or begin to replace the coordinator,
which has lower identifier
– Send an election message to all processes with higher id's and waits for answers (except the
failed coordinator/process)
• If no answers in time T
– Considers it is the coordinator
– sends coordinator message (with its id) to all processes with lower id's
• else
– waits for a coordinator message and starts an election if T‘ timeout
– To be a coordinator, it has to start an election
• A higher id process can replace the current coordinator (hence ―bully‖)
– The highest one directly sends a coordinator message to all process with lower identifiers
• Receiving an election message
– sends an answer message back
– starts an election if it hasn't started one—send election messages to all higher-id processes
(including the ―failed‖ coordinator—the coordinator might be up by now)
• Receiving a coordinator message
– set electedi to the new coordinator

Page | 59

–

The bully election algorithm: discussion

 Properties

 safety:

 a lower-id process always yields to a higher-id process

 However, it‘s guaranteed

 if processes that have crashed are replaced by processes with the same identifier since
message delivery order might not be guaranteed and
 failure detection might be unreliable

 liveness: all processes participate and know the coordinator at the end

 Performance

 best case: when?

 overhead: N-2 coordinator messages

 turnaround delay: no election/answer messages

Multicast Communication

 Group (multicast) communication: for each of a group of processes to receive copies
of the messages sent to the group, often with delivery guarantees
 The set of messages that every process of the group should receive

 On the delivery ordering across the group members

 Challenges

 Efficiency concerns include minimizing overhead activities and increasing throughput
and bandwidth utilization
 Delivery guarantees ensure that operations are completed

 Types of group

 Static or dynamic: whether joining or leaving is considered Closed or open

Page | 60

















A group is said to be closed if only members of the group can multicast to it. Reliable
Multicast
Simple basic multicasting (B-multicast) is sending a message to every process that is a
member of a defined group
B-multicast (g, m) for each process p ∈ group g, send (p, message m)
On receive (m) at p: B-deliver (m) at p
Reliable multicasting (R-multicast) requires these properties
Integrity: a correct process sends a message to only a member of the group
Validity: if a correct process sends a message, it will eventually bedelivered
Agreement: if a message is delivered to a correct process, all other correct processes
in the group will deliver it

Types of message ordering
Three types of message ordering
– FIFO (First-in, first-out) ordering: if a correct process delivers a message before
another, every correct process will deliver the first message before the other
– Casual ordering: any correct process that delivers the second message will deliver the
previous message first
– Total ordering: if a correct process delivers a message before another, any other
correct
process that delivers the second message will deliver the first message first
•Note that
– FIFO ordering and casual ordering are only partial orders
– Not all messages are sent by the same sending process
– Some multicasts are concurrent, not able to be ordered by happened before
– Total order demands consistency, but not a particular order

Figure 12.12 Total, FIFO and causal ordering of multicast messages

Page | 61

Implementing total ordering

Notice

 the consistent ordering of totally ordered messages T1 and T2,

 the FIFO-related messages F1 and F2 and

 the causally related messages C1 and C3 and

 the otherwise arbitrary delivery ordering of messages
Note that T1 and T2 are delivered in opposite order to the physical time of message creation
Bulletin board example (FIFO ordering)
• A bulletin board such as Web Board at NJIT illustrates the desirability of consistency and FIFO
ordering. A user can best refer to preceding messages if they are delivered in order. Message 25
in Figure 12.13 refers to message 24, and message 27 refers to message 23.

• Note the further advantage that Web Board allows by permitting messages to begin threads by
replying to a particular message. Thus messages do not have to be displayed in the same order
they are delivered

Page | 62

Figure 12.15 The ISIS algorithm for total ordering

Each process q in group g keeps
• Aq g: the largest agreed sequence number it has observed so far for the
group g • Pq g: its own largest proposed sequence number

Algorithm for process p to multicast a message m to group g
1. B-multicasts <m, i> to g, where i is a unique identifier for m

• The normal approach to total ordering is to assign totally ordered identifiers to multicast
messages, using the identifiers to make ordering decisions.
• One possible implementation is to use a sequencer process to assign identifiers. See Figure
12.14. A drawback of this is that the sequencer can become a bottleneck.
• An alternative is to have the processes collectively agree on identifiers. A simple algorithm is
shown in Figure 12.15.

Page | 63

Consensus and related problems
• Problems of agreement
– For processes to agree on a value (consensus) after one or more of the processes has
proposed what that value should be
– Covered topics: byzantine generals, interactive consistency, totally ordered multicast
• The byzantine generals problem: a decision whether multiple armies should attack or
retreat, assuming that united action will be more successful than some attacking and
some retreating
• Another example might be space ship controllers deciding whether to proceed or
abort. Failure handling during consensus is a key concern
• Assumptions
– communication (by message passing) is reliable
– processes may fail
• Sometimes up to f of the N processes are faulty

Consensus Process
1. Each process pi begins in an undecided state and proposes a single value vi, drawnfrom a set
D (i=1…N)
2. Processes communicate with each other, exchanging values
3. Each process then sets the value of a decision variable di and enters the decided state

2. Each process q replies to the sender p with a proposal for the message‘s agreed sequence
number of Pq g :=Max(Aq g, Pq g)+1
3. Collects all the proposed sequence numbers and selects the largest one a as the next agreed
sequence number. It then B-multicasts <i, a> to g.
4. Each process q in g sets Aq g := Max(Aq g, a) and attaches a to the message identified by i

Implementing casual ordering
• Causal ordering using vector timestamps (Figure 12.16)
– Only orders multicasts, and ignores one-to-one messages between processes
– Each process updates its vector timestamp before delivering a message to maintain the count of
precedent messages

Page | 64

Requirements for Consensus

• Three requirements of a consensus algorithm
– Termination: Eventually every correct process sets its decision variable
– Agreement: The decision value of all correct processes is the same: if pi and pj are correct and
have entered the decided state, then di=dj
(i,j=1,2, …, N)
– Integrity: If the correct processes all proposed the same value, then any correct process in the
decided state has chosen that value

The byzantine generals problem

• Problem description
– Three or more generals must agree to attack or to retreat
– One general, the commander, issues the order
– Other generals, the lieutenants, must decide to attack or retreat
– One or more generals may be treacherous
• A treacherous general tells one general to attack and another to retreat
• Difference from consensus is that a single process supplies the value to agree on
• Requirements
– Termination: eventually each correct process sets its decision variable
– Agreement: the decision variable of all correct processes is the same
– Integrity: if the commander is correct, then all correct processes agree on the value that the
commander has proposed (but the commander need not be correct)
The interactive consistency problem

• Interactive consistency: all correct processes agree on a vector of values, one for each process.
This is called the decision vector
– Another variant of consensus
• Requirements
– Termination: eventually each correct process sets its decision variable
– Agreement: the decision vector of all correct processes is the same
– Integrity: if any process is correct, then all correct processes decide the correct value for that

Page | 65

Limits for solutions to Byzantine Generals

• Some cases of the Byzantine Generals problems have no solutions
– Lamport et al found that if there are only 3 processes, there is no solution
– Pease et al found that if the total number of processes is less than three times the
number of failures plus one, there is no solution
• Thus there is a solution with 4 processes and 1 failure, if there are two rounds
– In the first, the commander sends the values
– while in the second, each lieutenant sends the values it received

process

Relating consensus to other problems
• Consensus (C), Byzantine Generals (BG), and Interactive Consensus (IC) are all problems
concerned with making decisions in the context of arbitrary or crash failures
• We can sometimes generate solutions for one problem in terms of another. For example
– We can derive IC from BG by running BG N times, once for each process with that process
acting as commander
– We can derive C from IC by running IC to produce a vector of values at each process, then
applying a function to the vector‘s values to derive a single value.
– We can derive BG from C by
• Commander sends proposed value to itself and each remaining process
• All processes run C with received values
• They derive BG from the vector of C values
Consensus in a Synchronous System
• Up to f processes may have crash failures, all failures occurring during f+1 rounds.
During each round, each of the correct processes multicasts the values among themselves
• The algorithm guarantees all surviving correct processes are in a position to agree
• Note: any process with f failures will require at least f+1 rounds to agree

Page | 66

Figure 12.20 Four Byzantine generals

Asynchronous Systems
• All solutions to consistency and Byzantine generals problems are limited to
synchronous systems
• Fischer et al found that there are no solutions in an asynchronous system with even
one failure • This impossibility is circumvented by masking faults or using failure
detection
• There is also a partial solution, assuming an adversary process, based on introducing
random values in the process to prevent an effective thwarting strategy. This does not
always reach consensus

Page | 67

Synchronous and asynchronous communication • A queue is associated with each
message destination. Sending processes cause messages to be added to remote
queues and receiving processes remove messages from local queues. Communication
between the sending and receiving processes may be either synchronous or
asynchronous. In the synchronous form of communication, the sending and receiving
processes synchronize at every message. In this case,

The application program interface to UDP provides a message passing abstraction– the
simplest form of interprocess communication. This enables a sending process to
transmit a single message to a receiving process. The independent packets containing
these messages are called datagrams. In the Java and UNIX APIs, the sender specifies
the destination using a socket – an indirect reference to a particular port used by the
destination process at a destination computer.

The application program interface to TCP provides the abstraction of a two-way stream

between
pairs of processes. The information communicated consists of a stream of data itemswith no
message boundaries. Streams provide a building block for producer-consumer

communication. A
producer and a consumer form a pair of processes in which the role of the first is toproduce data
items and the role of the second is to consume them. The data items sent by the

producer to the
consumer are queued on arrival at the receiving host until the consumer is ready toreceive them.
The consumer must wait when no data items are available. The producer must wait if the

storage
used
to hold the queued data items is exhausted.

The API for the Internet protocols

The general characteristics of interprocess communication and then discuss the Internet

protocols
as an example, explaining how programmers can use them, either by means of UDPmessages or
through TCP streams.

The characteristics of interprocess communication
Message passing between a pair of processes can be supported by two messagecommunication
operations, send and receive, defined in terms of destinations and messages. To

communicate,
one process sends a message (a sequence of bytes) to a destination and anotherprocess at the
destination receives the message. This activity involves the communication of data from

the
sending process to the receiving process and may involve the synchronization of the two
processes.

 UNIT III

Inter Process Communication: Introduction, The API for the internet protocols, External Data
Representation and Marshalling, Client-Server Communication, Group Communication, Case Study: IPC
UNIX.
Distributed Objects and Remote Invocation: Introduction, Communication between Distributed Obje
Remote Procedure Call, Events and Notifications, Case study-Java RMI.

Application program interface

Page | 68

both send and receive are blocking operations. Whenever a send is issued the sending
process (or thread) is blocked until the corresponding receive is issued. Whenever a
receive is issued by a process (or thread), it blocks until a message arrives.

In the asynchronous form of communication, the use of the send operation is nonblocking

in that
the sending process is allowed to proceed as soon as the message has been copied to alocal
buffer, and the transmission of the message proceeds in parallel with the sending

process. The
receive operation can have blocking and non-blocking variants. In the non-blockingvariant, the
receiving process proceeds with its program after issuing a receive operation, which
provides a
buffer to be filled in the background, but it must separately receive notification that itsbuffer has
been filled, by polling or interrupt.

In a system environment such as Java, which supports multiple threads in a single

process, the
blocking receive has no disadvantages, for it can be issued by one thread while otherthreads in
the process remain active, and the simplicity of synchronizing the receiving threads with

the
incoming message is a substantial advantage. Non-blocking communication appears tobe more
efficient, but it involves extra complexity in the receiving process associated with the
need to
acquire the incoming message out of its flow of control. For these reasons, today’ssystems do
not generally provide the nonblocking form of receive.

Message destinations • Chapter 3 explains that in the Internet protocols, messages

are sent to
(Internet address, local port) pairs. A local port is a message destination within acomputer,
specified as an integer. A port has exactly one receiver but can have many senders.

Processes
may use multiple ports to receive messages. Any process that knows the number of aport can
send a message to it. Servers generally publicize their port numbers for use by clients.

Reliability • As far as the validity property is concerned, a point-to-point message

service can
be described as reliable if messages are guaranteed to be delivered despite a‘reasonable’ number
of packets being dropped or lost. In contrast, a point-to-point message service can be

described
as unreliable if messages are not guaranteed to be delivered in the face of even a singlepacket
dropped or lost. For integrity, messages must arrive uncorrupted and without duplication.

Ordering • Some applications require that messages be delivered in sender order – that

Page | 69

For a process to receive messages, its socket must be bound to a local port and one of the
Internet addresses of the computer on which it runs. Messages sent to a particular
Internet address and port number can be received only by
a process whose socket is associated with that Internet address and port number.
Processes may use the same socket for sending and receiving messages. Each computer
has a large number
(216) of possible port numbers for use by local processes for receiving messages. Any
process
may make use of multiple ports to receive messages, but a process cannot share ports

with other
processes on the same computer. However, any number of processes may sendmessages to the
same port. Each socket is associated with a particular protocol – either UDP or TCP.

Java API for Internet addresses • As the IP packets underlying UDP and TCP are

sent to
Internet addresses, Java provides a class, InetAddress, that represents Internetaddresses. Users of
this class refer to computers by Domain Name System (DNS) hostnames. For example,

instances
of InetAddress that contain Internet addresses can be created by calling a static methodof
InetAddress, giving a DNS hostname as the argument. The method uses the DNS to get
the
corresponding Internet address. For example, to get an object representing the Internetaddress of
the host whose DNS name is bruno.dcs.qmul.ac.uk, use:

InetAddress aComputer = InetAddress.getByName("bruno.dcs.qmul.ac.uk");

This method can throw an UnknownHostException. Note that the user of the class does

not need
to state the explicit value of an Internet address. In fact, the class encapsulates thedetails of the
representation of Internet addresses. Thus the interface for this class is not dependent on

the
number of bytes needed to represent Internet addresses – 4 bytes in IPv4 and 16 bytes inIPv6.
UDP datagram communication

A datagram sent by UDP is transmitted from a sending process to a receiving process

without
acknowledgement or retries. If a failure occurs, the message may not arrive. A datagrami

Page | 70

The following are some issues relating to datagram communication:

Message size: The receiving process needs to specify an array of bytes of a particular size in
which to receive a message. If the message is too big for the array, it is truncated on arrival. The
underlying IP protocol allows packet lengths of up to 216 bytes, which includes the headers as
well as the message. However, most environments impose a size restriction of 8 kilobytes. Any
application requiring messages larger than the maximum must fragment them into chunks of that
size.
Generally, an application, for example DNS, will decide on a size that is not excessively large
but is adequate for its intended use.
Blocking: Sockets normally provide non-blocking sends and blocking receives for datagram
communication (a non-blocking receive is an option in some implementations). The send
operation returns when it has handed the message to the underlying UDP and IP protocols, which
are responsible for transmitting it to its destination. On arrival, the message is placed in a queue
for the socket that is bound to the destination port. The message can be collected from the queue
by an outstanding or future invocation of receive on that socket. Messages are discarded at the
destination if no process already has a socket bound to the destination port.
Timeouts: The receive that blocks forever is suitable for use by a server that is waiting to receive
requests from its clients. But in some programs, it is not appropriate that a process that has
invoked a receive operation should wait indefinitely in situations where the sending process may
have crashed or the expected message may have been lost. To allow for such requirements,
timeouts can be set on sockets. Choosing an appropriate timeout interval is difficult, but it should
be fairly large in comparison with the time required to transmit a message.

Receive from any: The receive method does not specify an origin for messages. Instead, an
invocation of receive gets a message addressed to its socket from any origin. The receive method
returns the Internet address and local port of the sender, allowing the recipient to check where
the message came from. It is possible to connect a datagram socket to a particular remote port
and Internet address, in which case the socket is only able to send messages to and receive
messages from that address.
Failure model for UDP datagrams • A failure model for communication channels and defines
reliable communication in terms of two properties: integrity and validity. The integrity property
requires that messages should not be corrupted or duplicated. The use of a checksum ensures that
there is a negligible probability that any message received is corrupted. UDP datagrams suffer
from the following failures:

Omission failures: Messages may be dropped occasionally, either because of a checksum error or
because no buffer space is available at the source or destination. To simplify the discussion, we
regard send-omission and receive-omission failures as omission failures in the communication
channel.
-

Ordering: Messages can sometimes be delivered out of sender order. Applications using UDP

Page | 71

datagrams are left to provide their own checks to achieve the quality of reliable communication
they require. A reliable delivery service may be constructed from one that suffers from omission
failures by the use of acknowledgements.

Use of UDP • For some applications, it is acceptable to use a service that is liable to occasional
omission failures. For example, the Domain Name System, which looks up DNS names in the
Internet, is implemented over UDP. Voice over IP (VOIP) also runs over UDP. UDP datagrams
are sometimes an attractive choice because they do not
suffer from the overheads associated with guaranteed message delivery. There are three main
sources of overhead:
• the need to store state information at the source and destination;
• the transmission of extra messages;
• latency for the sender.

Java API for UDP datagrams • The Java API provides datagram communication by means of
two classes: DatagramPacket and DatagramSocket. DatagramPacket:
This class provides a constructor that makes an instance out of an array of bytes comprising a
message, the length of the message and the Internet address and local port number of the
destination socket, as follows:

Datagram packet
array of bytes containing message length of message Internet address port number
An instance of DatagramPacket may be transmitted between processes when one process sends
it and another receives it.
UDP server repeatedly receives a request and sends it back to the

c lie nt

Page | 72

DatagramSocket: This class supports sockets for sending and receiving UDP datagrams. It
provides a constructor that takes a port number as its argument, for use by processes that need to
use a particular port. It also provides a no-argument constructor that allows the system to choose
a free local port. These constructors can throw a SocketException if the chosen port is already in
use or if a reserved port (a number below 1024) is specified when running over UNIX.

UDP server repeatedly receives a request and sends it back to the c lie nt

Page | 73

TCP stream communication

The API to the TCP protocol, which originates from BSD 4.x UNIX, provides the abstraction of
a stream of bytes to which data may be written and from which data may be read. The following
characteristics of the network are hidden by the stream abstraction:

Message sizes: The application can choose how much data it writes to a stream or reads from it.
It may deal in very small or very large sets of data. The underlying implementation of a TCP
stream decides how much data to collect before transmitting it as one or more IP packets. On
arrival, the data is handed to the application as requested. Applications can, if necessary, force
data to be sent immediately.

Lost messages: The TCP protocol uses an acknowledgement scheme. As an example of a simple
scheme (which is not used in TCP), the sending end keeps a record of each IP packet sent and the
receiving end acknowledges all the arrivals. If the sender does not receive an acknowledgement
within a timeout, it retransmits the message. The more sophisticated sliding window scheme
[Comer 2006] cuts down on the number of acknowledgement messages required.

Flow control: The TCP protocol attempts to match the speeds of the processes that read from and
write to a stream. If the writer is too fast for the reader, then it is blocked until the reader has
consumed sufficient data.

Message duplication and ordering: Message identifiers are associated with each IP packet,
which enables the recipient to detect and reject duplicates, or to reorder messages that do not
arrive in sender order.

Page | 74

TCP server makes a connection for each client and then echoes the client’s request

-

Message destinations: A pair of communicating processes establish a connection before they can
communicate over a stream. Once a connection is established, the processes simply read from
and write to the stream without needing to use Internet addresses and ports. Establishing a
connection involves a connect request from client to server followed by an accept request from
server to client before any communication can take place. This could be a considerable overhead
for a single client-server request and reply.
Java API for TCP streams • The Java interface to TCP streams is provided in the classes
ServerSocket and Socket:
ServerSocket: This class is intended for use by a server to create a socket at a server port for
listening for connect requests from clients. Its accept method gets a connect request from the
queue or, if the queue is empty, blocks until one arrives. The result of executing accept is an
instance of Socket – a socket to use for communicating with the client.
Socket: This class is for use by a pair of processes with a connection. The client uses a
constructor to create a socket, specifying the DNS hostname and port of a server. This
constructor not only creates a socket associated with a local port but also connects it to the
specified remote computer and port number. It can throw an UnknownHostException if the
hostname is wrong or an IOException if an IO error occurs.

TCP client makes connection to server, sends request and receives reply

Page | 75

Page | 76

External data representation and marshalling

The information stored in running programs is represented as data structures – for example, by
sets of interconnected objects – whereas the information in messages consists of sequences of
bytes. Irrespective of the form of communication used, the data structures must be flattened
(converted to a sequence of bytes) before transmission and rebuilt on arrival. The individual
primitive data items transmitted in messages can be data values of many different types, and not
all computers store primitive values such as integers in the same order. The representation of
floating-point numbers also differs between architectures. There are two variants for the ordering
of integers: the so-called big-endian order, in which the most significant byte comes first; and
little-endian order, in which it comes last. Another issue is the set of codes used to represent
characters: for example, the majority of applications on systems such as UNIX use ASCII
character coding, taking one byte per character, whereas the Unicode standard allows for the
representation of texts in many different languages and takes two bytes per character.
One of the following methods can be used to enable any two computers to exchange binary data
values:
• The values are converted to an agreed external format before transmission and converted to the
local form on receipt; if the two computers are known to be the same type, the conversion to
external format can be omitted.

• The values are transmitted in the sender’s format, together with an indication of the format
used, and the recipient converts the values if necessary. Note, however, that bytes themselves are
never altered during transmission. To support RMI or RPC, any data type that can be passed as
an argument or returned as a result must be able to be flattened and the individual primitive data
values represented in an agreed format. An agreed standard for the representation of data
structures and primitive values is called an external data representation.
Marshalling is the process of taking a collection of data items and assembling them into a form
suitable for transmission in a message. Unmarshalling is the process of disassembling them on
arrival to produce an equivalent collection of data items at the destination. Thus marshalling
consists of the translation of structured data items and
primitive values into an external data representation. Similarly, unmarshalling consists of the
generation of primitive values from their external data representation and the rebuilding of the
data structures.

Three alternative approaches to external data representation and marshalling are discussed:

• CORBA’s common data representation, which is concerned with an external representation for
the structured and primitive types that can be passed as the arguments and results of remote
method invocations in CORBA. It can be used by a variety of programminglanguages.

Page | 77

-

• Java’s object serialization, which is concerned with the flattening and external data
representation of any single object or tree of objects that may need to be transmitted in a message
or stored on a disk. It is for use only by Java.

• XML (Extensible Markup Language), which defines a textual fomat for representing structured
data. It was originally intended for documents containing textual self-describing structured data –
for example documents accessible on the Web – but it is now also used to represent the data sent
in messages exchanged by clients and servers in web services.
In the first two cases, the marshalling and unmarshalling activities are intended to be carried out
by a middleware layer without any involvement on the part of the application programmer. Even
in the case of XML, which is textual and therefore more accessible to hand-encoding, software
for marshalling and unmarshalling is available for all commonly used platforms and
programming environments. Because marshalling requires the consideration of all the finest
details of the representation of the primitive components of composite objects, the process is
likely to be error-prone if carried out by hand. Compactness is another issue that can be
addressed in the design of automatically generated marshalling procedures.
In the first two approaches, the primitive data types are marshalled into a binary form. In the
third approach (XML), the primitive data types are represented textually. The textual
representation of a data value will generally be longer than the equivalent binary representation.
The HTTP protocol, which is described in Chapter 5, is another example of the textual approach.
Another issue with regard to the design of marshalling methods is whether the marshalled data
should include information concerning the type of its contents. For example, CORBA’s
representation includes just the values of the objects transmitted, and nothing about their types.
On the other hand, both Java serialization and XML do include type information, but in different
ways. Java puts all of the required type information into the serialized form, but XML documents
may refer to externally defined sets of names (with types) called namespaces.
Although we are interested in the use of an external data representation for the arguments and
results of RMIs and RPCs, it does have a more general use for representing data structures,
objects or structured documents in a form suitable for transmission in messages or storing in
files.
CORBA CDR for constructed types

Page | 78

Marshalling in CORBA • Marshalling operations can be generated automatically from the
specification of the types of data items to be transmitted in a message. The types of the
data structures and the types of the basic data items are described in CORBA IDL (see
Section 8.3.1), which provides a notation for describing the types of the arguments and
results of RMI methods.

Java object serialization

In Java RMI, both objects and primitive data values may be passed as arguments and

results of
method invocations. An object is an instance of a Java class. For example, the Java class
equivalent to the Person struct defined in CORBA IDL might be:

public class Person implements Serializable {
private String name;
private String place;
private int year;
public Person(String aName, String aPlace, int aYear) {

CORBA’s Common Data Representation (CDR)

CORBA CDR is the external data representation defined with CORBA 2.0. CDR can represent
all of the data types that can be used as arguments and return values in remote invocations in
CORBA. These consist of 15 primitive types, which include short (16-bit), long (32-bit),
unsigned short, unsigned long, float (32-bit), double (64-bit), char, boolean (TRUE, FALSE),
octet (8-bit), and any (which can represent any basic or constructed type); together with a range
of composite types, which are described in Figure 4.7. Each argument or result in a remote
invocation is
represented by a sequence of bytes in the invocation or result message.

Page | 79

name = aName;
place = aPlace;
year = aYear;
}
// followed by methods for accessing the instance variables
}

Extensible Markup Language (XML)

XML is a markup language that was defined by the World Wide Web Consortium (W3C) for
general use on the Web. In general, the term markup language refers to a textual encoding that
represents both a text and details as to its structure or its appearance. Both XML and HTML
were derived from SGML (Standardized Generalized Markup Language) [ISO 8879], a very
complex markup language. HTML was designed for defining the appearance of web pages.
XML was designed for writing structured documents for the Web.
XML data items are tagged with ‘markup’ strings. The tags are used to describe the logical
structure of the data and to associate attribute-value pairs with logical structures. That is, in
XML, the tags relate to the structure of the text that they enclose, in contrast to HTML, in which
the tags specify how a browser could display the text. For a specification of XML, see the pages
on XML provided by W3C [www.w3.org VI].

XML is used to enable clients to communicate with web services and for defining the interfaces
and other properties of web services. However, XML is also used in many other ways, including
in archiving and retrieval systems – although an XML archive may be larger than a binary one, it
has the advantage of being readable on any computer.
Other examples of uses of XML include for the specification of user interfaces and the encoding
of configuration files in operating systems.
XML is extensible in the sense that users can define their own tags, in contrast to HTML, which
uses a fixed set of tags. However, if an XML document is intended to be used by more than one
application, then the names of the tags must be agreed between them. For example, clients
usually use SOAP messages to communicate with web
services. SOAP is an XML format whose tags are published for use by web services and their
clients.
Some external data representations (such as CORBA CDR) do not need to be self describing,
because it is assumed that the client and server exchanging a message have prior knowledge of
the order and the types of the information it contains. However, XML was intended to be used by
multiple applications for different purposes. The provision of tags, together with the use of
namespaces to define the meaning of the tags, has made this possible. In addition, the use of tags
enables applications to select just those parts of a document it needs to process: it will not be
affected by the addition of information relevant to other applications.

http://www.w3.org/
http://www.w3.org/

Page | 80

XML definition of the Person structure

-

Remote object references

Java and CORBA that support the distributed object model. It is not relevant to XML. When a
client invokes a method in a remote object, an invocation message is sent to the server process
that hosts the remote object. This message needs to specify which particular object is to have its
method invoked. A remote object reference is an identifier for a remote object that is valid
throughout a distributed system. A remote object reference is passed in the invocation message
to specify which object is to be invoked. Chapter 5 explains that remote object references are
also passed as arguments and returned as results of remote method invocations, that each remote
object has a single remote object reference and that remote object references can be compared to
see whether they refer to the same remote object. Here, we discuss the external representation of
remote object references.

Client-server communication

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments) sends a request
message to the remote object and returns the reply.
The arguments specify the remote object, the method to be invoked and the arguments of that
method.
public byte[] getRequest (); acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort); sends the reply
message reply to the client at its Internet address and port.

Page | 81

RPC exchange protocols

HTTP request message

HTTP reply message

Request-reply communication

Group communication

A multicast operation is more appropriate – this is an operation that sends a single message from
one process to
each of the members of a group of processes, usually in such a way that the membership of the
group is transparent to the sender. There is a range of possibilities in the desired behaviour of a
multicast. The simplest multicast rotocol provides no guarantees about message delivery or
ordering.
Multicast messages provide a useful infrastructure for constructing distributed systems with the
following characteristics:
1. Fault tolerance based on replicated services: A replicated service consists of a group of
servers. Client requests are multicast to all the members of the group, each of which performs an
identical operation. Even when some of the members fail, clients can still be served.

2. Discovering services in spontaneous networking: Section 1.3.2 defines service discovery in
the context of spontaneous networking. Multicast messages can be used by servers and clients to
locate available discovery services in order to register their interfaces or to look up the interfaces
of other services in the distributed system.
3. Better performance through replicated data: Data are replicated to increase the performance
of a service – in some cases replicas of the data are placed in users’ computers. Each time the
data changes, the new value is multicast to the processes managing the replicas.

4. Propagation of event notifications: Multicast to a group may be used to notify processes when

Page | 82

Failure model for multicast datagrams • Datagrams multicast over IP multicast have
the same failure characteristics as UDP datagrams – that is, they suffer from omission
failures. The effect on a multicast is that messages are not guaranteed to be delivered to
any particular group member in the face of even a single omission failure. That is, some
but not all of the members of the group may receive it. This can be called unreliable
multicast, because it does not guarantee that a message will be delivered to any
member of a group.

something happens. For example, in Facebook, when someone changes their status, all
their friends receive notifications. Similarly, publishsubscribe protocols may make use of
group multicast to disseminate events to subscribers (see Chapter 6).

IP multicast – An implementation of multicast communication

IP multicast • IP multicast is built on top of the Internet Protocol (IP). Note that IP

packets are
addressed to computers – ports belong to the TCP and UDP levels. IP multicast allowsthe sender
to transmit a single IP packet to a set of computers that form a multicast group. The

sender is
unaware of the identities of the individual recipients and of the size of the group. Amulticast
group is specified by a Class D Internet address – that is, an address whose first 4 bits

are 1110
in IPv4.
At the application programming level, IP multicast is available only via UDP. An

application
program performs multicasts by sending UDP datagrams with multicast addresses andordinary
port numbers. It can join a multicast group by making its socket join the group,

enabling it to
receive messages to the group. At the IP level, a computer
belongs to a multicast group when one or more of its processes has sockets that

belong to that
group. When a multicast message arrives at a computer, copies are forwarded to all ofthe local
sockets that have joined the specified multicast address and are bound to the specified

port
number. The following details are specific to IPv4:
Multicast routers: IP packets can be multicast both on a local network and on the wider

Internet.
Local multicasts use the multicast capability of the local network, for example, of anEthernet.
Internet multicasts make use of multicast routers, which forward single datagrams to

routers on
other networks, where they are again multicast to local members. To limit the distance of
propagation of a multicast datagram, the sender can specify the number of routers it is
allowed to
pass – called the time to live, or TTL for short. To understand how routers know whichother
routers have members of a multicast group.

Multicast address allocation: As discussed in Chapter 3, Class D addresses (that is,

addresses in
the range 224.0.0.0 to 239.255.255.255) are reserved for multicast traffic and managedglobally
by the Internet Assigned Numbers Authority (IANA). The management of this address

space is
reviewed annually, with current practice documented in RPC 3171. This documentdefines a
partitioning of this address space into a number of blocks, including:

()

Page | 83

Reliability and ordering of multicast
The effect of the failure semantics of IP multicast on the four examples of the use of replication
1. Fault tolerance based on replicated services: Consider a replicated service that consists of the
members of a group of servers that start in the same initial state and always perform the same
operations in the same order, so as to remain consistent with one another. This application of
multicast requires that either all of the replicas or none of them should receive each request to
perform an operation – if one of them misses a request, it will become inconsistent with the
others. In most cases, this service would require that all members receive request messages in the
same order as one another.
2. Discovering services in spontaneous networking: One way for a process to discover services
in spontaneous networking is to multicast requests at periodic intervals, and for the available
services to listen for those multicasts and respond. An occasional lost request is not an issue
when discovering services.

3. Better performance through replicated data: Consider the case where the replicated data itself,
rather than operations on the data, are distributed by means of multicast messages. The effect of
lost messages and inconsistent ordering would depend on the method of replication and the
importance of all replicas being totally up-to-date.
4. Propagation of event notifications: The particular application determines the qualities required
of multicast. For example, the Jini lookup services use IP multicast to announce their existence

Java API to IP multicast • The Java API provides a datagram interface to IP multicast through
the class MulticastSocket, which is a subclass of DatagramSocket with the additional capability
of being able to join multicast groups. The class MulticastSocket provides two alternative
constructors, allowing sockets to be created to use either a or any free local port. A process can
join a multicast group with a given multicast address by invoking the joinGroup method of its
multicast socket. Effectively, the socket joins a multicast group at a given port and it will
receive datagrams sent by processes on other computers to that group at that port. A process can
leave a specified group by invoking the leaveGroup method of its multicast socket.
Multicast peer joins a group and sends and receives datagrams

Page | 84

Communication between Distributed Objects

The Object Model
Five Parts of the Object Model
– An object-oriented program consists of a collection of interacting objects
• Objects consist of a set of data and a set of methods
• In DS, object’s data should be accessible only via methods

Object References
– Objects are accessed by object references
– Object references can be assigned to variables, passed as arguments, and returned as the result
of a method
– Can also specify a method to be invoked on that object
Interfaces
– Provide a definition of the signatures of a set of methods without specifying their
implementation
– Define types that can be used to declare the type of variables or of the parameters and return
values of methods
Actions
– Objects invoke methods in other objects
– An invocation can include additional information as arguments to perform the behavior
specified by the method
– Effects of invoking a method
1. The state of the receiving object may be changed
2. A new object may be instantiated
3. Further invocations on methods in other objects may occur
4. An exception may be generated if there is a problem encountered

Exceptions
– Provide a clean way to deal with unexpected events or errors
– A block of code can be defined to throw an exception when errors or unexpected conditions
occur. Then control passes to code that catches the exception
Garbage Collection
– Provide a means of freeing the space that is no longer needed
– Java (automatic), C++ (user supplied)

Distributed Objects
• Physical distribution of objects into different processes or computers in a distributed system
– Object state consists of the values of its instance variables
– Object methods invoked by remote method invocation (RMI)
– Object encapsulation: object state accessed only by the object methods

Usually adopt the client-server architecture

– Basic model
• Objects are managed by servers and

Page | 85

Five Parts of Distributed Object Model

• Remote Object References
– accessing the remote object
– identifier throughout a distributed system
– can be passed as arguments
• Remote Interfaces
– specifying which methods can be invoked remotely
– name, arguments, return type
– Interface Definition Language (IDL) used for defining remote interface

Remote Object and Its remote Interface
• Actions
– An action initiated by a method invocation may result in further invocations on methods in
other objects located indifference processes or computers
– Remote invocations could lead to the instantiation of new objects, ie. objects M and N of
following figure.

• Their clients invoke their methods using RMI
– Steps
1. The client sends the RMI request in a message to the server
2. The server executes the invoked method of the object
3. The server returns the result to the client in another message
– Other models
• Chains of related invocations: objects in servers may become clients of objects in other servers
• Object replication: objects can be replicated for fault tolerance and performance
• Object migration: objects can be migrated to enhancing performance and availability
The Distributed Object Model
Two fundamental concepts: Remote Object Reference and Remote Interface
– Each process contains objects, some of which can receive remote invocations are called remote
objects (B, F), others only local invocations
– Objects need to know the remote object reference of an object in another process in order to
invoke its methods, called remote method invocations
– Every remote object has a remote interface that specifies which of its methods can be invoked
remotely
Remote and local method invocations

Page | 86

• Exceptions
– More kinds of exceptions: i.e. timeout exception
- RMI should be able to raise exceptions such as timeouts that are due to distribution as well as
those raised during the execution of the method invoked
• Garbage Collection
- Distributed garbage collections is generally achieved by cooperation between the existing local
garbage collector and an added module that carries out a form of distributed garbage collection,
usually based on reference counting

Design Issues for RMI
• Two design issues that arise in extension of local method invocation for RMI
– The choice of invocation semantics
• Although local invocations are executed exactly once, this cannot always be the case for RMI
due to transmission error
– Either request or reply message may be lost
– Either server or client may be crashed
– The level of transparency
• Make remote invocation as much like local invocation as possible

RMI Design Issues: Invocation Semantics
• Error handling for delivery guarantees
– Retry request message: whether to retransmit the request message until either a reply is
received or the server is assumed to have failed

– Duplicate filtering: when retransmissions are used, whether to filter out duplicate
requests at the server
– Retransmission of results: whether to keep a history of result messages to enable lost
results to be retransmitted without re-executing the operations
• Choices of invocation semantics
– Maybe: the method executed once or not at all (no retry nor retransmit)
– At-least-once: the method executed at least once
– At-most-once: the method executed exactly once

C remote
invocation

L

instantiateinstantiate

M N

remote
invocation

K

Page | 87

Invocation semantics: choices of interest

RMI Design Issues: Transparency

• Transparent remote invocation: like a local call
– marshalling/unmarshalling
– locating remote objects
– accessing/syntax
• Differences between local and remote invocations
– latency: a remote invocation is usually several order of magnitude greater than that of a
local one
– availability: remote invocation is more likely to fail
– errors/exceptions: failure of the network? server? hard to tell
• syntax might need to be different to handle different local vs remote errors/exceptions (e.g.
Argus)
– consistency on the remote machine:
• Argus: incomplete transactions, abort, restore states [as if the call was never made]

Implementation of RMI

•Communication module
– Two cooperating communication modules carry out the request-reply protocols:

message type, request ID, remote object reference
• Transmit request and reply messages between client and server
• Implement specific invocation semantics
– The communication module in the server
• selects the dispatcher for the class of the object to be invoked,
• passes on local reference from remote reference module,
• returns request

Page | 88

The role of proxy and skeleton in remote method invocation

Implementation Alternatives of RMI

• Dynamic invocation
– Proxies are static—interface complied into client code
– Dynamic—interface available during run time
• Generic invocation; more info in ―Interface Repository‖ (COBRA)
• Dynamic loading of classes (Java RMI)
•Binder
– A separate service to locate service/object by name through table mapping for names and
remote object references

• Remote reference module
– Responsible for translating between local and remote object references and for creating remote
object references
– remote object table: records the correspondence between local and remote object references
• remote objects held by the process (B on server)
• local proxy (B on client)
– When a remote object is to be passed for the first time, the module is asked to create a remote
object reference, which it adds to its table

• Servant
– An instance of a class which provides the body of a remote object
– handles the remote requests
•RMI software
– Proxy: behaves like a local object, but represents the remote object
– Dispatcher: look at the methodID and call the corresponding method in the skeleton
– Skeleton: implements the method
Generated automatically by an interface compiler

Page | 89

• Cache/broadcast scheme (similar to ARP)
– Cache locations
– If not in cache, broadcast to find it
• Improvement: forwarding (similar to mobile IP)

Distributed Garbage Collection
• Aim: ensure that an object
– continues to exist if a local or remote reference to it is still held anywhere

– be collected as soon as no object any longer holds a reference to it
• General approach: reference count
• Java's approach
– the server of an object (B) keeps track of proxies
– when a proxy is created for a remote object
• addRef(B) tells the server to add an entry
– when the local host's garbage collector removes the proxy
• removeRef(B) tells the server to remove the entry

– when no entries for object B, the object on server is deallocated

• Activation of remote objects
– Motivation: many server objects not necessarily in use all of the time
• Servers can be started whenever they are needed by clients, similar to inetd
– Object status: active or passive
• active: available for invocation in a running process
• passive: not running, state is stored and methods are pending
– Activation of objects:
• creating an active object from the corresponding passive object by creating a
new instance of its class
• initializing its instance variables from the stored state
– Responsibilities of activator
• Register passive objects that are available for activation
• Start named server processes and activate remote objects in them

• Keep track of the locations of the servers for remote objects that it has already
activated

• Persistent object stores
– An object that is guaranteed to live between activations of processes is called a

persistent object
– Persistent object store: managing the persistent objects
• stored in marshaled from on disk for retrieval
• saved those that were modified
– Deciding whether an object is persistent or not:

• persistent root: any descendent objects are persistent (persistent Java, PerDiS)
• some classes are declared persistent (Arjuna system)
• Object location
– specifying a location: ip address, port #, ...
– location service for migratable objects

• Map remote object references to their probable current locations

Page | 90

Case Study: Sun RPC
•Sun RPC: client-server in the SUN NFS (network file system)
– UDP or TCP; in other unix OS as well
– Also called ONC (Open Network Computing) RPC
•Interface Definition Language (IDL)
– initially XDR is for data representation, extended to be IDL
– less modern than CORBA IDL and Java

• program numbers instead of interface names
• procedure numbers instead of procedure names
• single input parameter (structs)
– rpcgen: compiler for XDR
• client stub; server main procedure, dispatcher, and server stub
• XDR marshalling, unmarshaling
•Binding (registry) via a local binder - portmapper
– Server registers its program/version/port numbers with portmapper
– Client contacts the portmapper at a fixed port with program/version numbers to get the
server port
– Different instances of the same service can be run on different computers at different ports

•Authentication
– request and reply have additional fields
– unix style (uid, gid), shared key for signing, Kerberos

Remote Procedure Call
• client: "stub" instead of "proxy" (same function, different names)
– local call, marshal arguments, communicate the request
•server:
– dispatcher
– "stub": unmarshal arguments, communicate the results back

Role of client and server stub procedures in RPC in the context of a procedural language

Page | 91

Files interface in Sun XDR

Events and Notifications

•Idea behind the use of events
– One object can react to a change occurring in another object
•Events
– Notifications of events: objects that represent events
• asynchronous and determined by receivers what events are interested
– event types
• each type has attributes (information in it)
• subscription filtering: focus on certain values in the attributes (e.g. "buy" events, but
only "buy car" events)
•Publish-subscribe paradigm
– publish events to send
– subscribe events to receive

•Main characteristics in distributed event-based systems
– Heterogeneous: a way to standardize communication in heterogeneous
systems
• not designed to communicate directly
– Asynchronous: notifications are sent asynchronously

Page | 92

Distributed Event Notification

• Distributed event notification
– decouple publishers from subscribers via an event service (manager)

• Architecture: roles of participating objects
– object of interest (usually changes in states are interesting)
– event
– notification
– subscriber

– observer object (proxy) [reduce work on the object of interest]
•forwarding
• filtering of events types and content/attributes
• patterns of events (occurrence of multiple events, not just one)
• mailboxes (notifications in batch es, subscriber might not be ready)
– publisher (object of interest or observer object)

• no need for a publisher to wait for each subscriber--subscribers come and go

Dealing room system: allow dealers using computers to see the latest information about the
market prices of the stocks they deal in

Page | 93

•Jini

• generates event notifications

Example: Distributed Event Notification

•Three cases
– Inside object without an observer: send notifications directly to the subscribers
– Inside object with an observer: send notification via the observer to the subscribers
– Outside object (with an observer)
1. An observer queries the object of interest in order to discover when events occur
2. The observer sends notifications to the subscribers

Case Study: Jini Distributed Event Specification

–Allow a potential subscriber in one Java Virtual Machine (JVM) to subscribe to and receive
notifications of events in an objectof interest in another JVM
– Main objects
• event generators (publishers)
• remote event listeners (subscribers)
• remote events (events)
• third-party agents (observers)
– An object subscribes to events by informing the event generator about the type of event and
specifying a remote event listener as the target for notification

Case Study: Java RMI

Java Remote interfaces Shape and ShapeList and Java class ShapeListServant implements
interface ShapeList

Page | 94

Page | 95

Naming class of Java RMIregistry

Java class ShapeListServer with main and Java client of ShapreList

Page | 96

Java class ShapeListServer with main method

Java class ShapeListServant implements interface ShapeList

Page | 97

Java class ShapeListServant implements interface ShapeList

-

Java RMI Callbacks
•Callbacks
– server notifying the clients of events
– why?
• polling from clients increases overhead on server
• not up-to-date for clients to inform users
– how
• remote object (callback object) on client for server to call

• client tells the server about the callback object, server put the client on a list
• server call methods on the callback object when events occur

– client might forget to remove itself from the list
• lease--client expire

Page | 98

An operating system that produces a single system image like this for all the resources in
a distributed system is called a distributed operating system

The task of any operating system is to provide problem-oriented abstractions of the
underlying physical resources – the processors, memory, networks, and storage media.
An operating system such as UNIX (and its variants, such as Linux and Mac OS X) or
Windows (and its variants, such as XP, Vista and Windows 7) provides the programmer
with, for example, files rather than disk blocks, and with sockets rather than raw
network access. It takes over the physical resources on a single node and manages
them to present these resource abstractions through the system-call interface.

The operating system’s middleware support role, it is useful to gain some historical

perspective
by examining two operating system concepts that have come about during thedevelopment of
distributed systems: network operating systems and distributed operating systems.

Both UNIX and Windows are examples of network operating systems. They have a

networking
capability built into them and so can be used to access remote resources. Access isnetwork-
transparent for some – not all – types of resource. For example, through a distributed file

system
such as NFS, users have network-transparent access to files. That is, many of the filesthat users
access are stored remotely, on a server, and this is largely transparent to their

applications.

Page | 99

Middleware and the Operating System

What is a distributed OS?
• Presents users (and applications) with an integrated computing platform that hides

the individual computers.
• Has control over all of the nodes (computers) in the network and allocates their
resources to tasks without user involvement.
• In a distributed OS, the user doesn't know (or care) where his programs
are running.
• Examples:
• Cluster computer systems
• V system, Sprite
• In fact, there are no distributed operating systems in general use, only network operating
systems such as UNIX, Mac OS and Windows.
• to remain the case, for two main reasons.

The first is that users have much invested in their application software, which often meets their
current problem-solving needs; they will not adopt a new operating system that will not run their
applications, whatever efficiency advantages it offers.

The second reason against the adoption of distributed operating systems is that users tend to
prefer to have a degree of autonomy for their machines, even in a closely knit organization.
Combination of middleware and network OS

• No distributed OS in general use
– Users have much invested in their application software
– Users tend to prefer to have a degree of autonomy for their machines
• Network OS provides autonomy
• Middleware provides network-transparent access resource

The relationship between OS and Middleware
• Operating System
– Tasks: processing, storage and communication
– Components: kernel, library, user-level services
• Middleware
– runs on a variety of OS-hardware combinations

Page | 100

OS:
kernel,
librarie
s &
servers

– remote invocations

Platform

Functions that OS should provide for middleware

The following figure shows how the operating system layer at each of two nodes supports a
common middleware layer in providing a distributed infrastructure for applications and services.

Computer &
network hardware

OS1

Processes, threads,
communication, ...

Middleware

Applications, services

Computer &
network hardware

OS2
Processes, threads,
communication, ...

Page | 101

• Process manager
– Handles the creation of and operations upon processes.

• Thread manager
– Thread creation, synchronization and scheduling
• Communication manager

– Communication between threads attached to different processes on the same
computer
• Memory manager
– Management of physical and virtual memory
• Supervisor

– Dispatching of interrupts, system call traps and other exceptions
– control of memory management unit and hardware caches
processor and floating point unit register manipulations

Node 1 Node 2
Encapsulation: They should provide a useful service interface to their resources – that is,
a set of operations that meet their clients’ needs. Details such as management of
memory and devices used to implement resources should be hidden from clients.
Protection: Resources require protection from illegitimate accesses – for example, files
are
protected from being read by users without read permissions, and device registers are
protected
from application processes.
Concurrent processing: Clients may share resources and access them concurrently.
Resource
managers are responsible for achieving concurrency transparency.
Communication: Operation parameters and results have to be passed to and from
resource
managers, over a network or within a computer.
Scheduling: When an operation is invoked, its processing must be scheduled within the
kernel or
server.

The core OS components

Thread manager

Supervisor

Communication
manager

Process manager

Memorymanager

Page | 102

Software and hardware service layers in distributed systems

Middleware

Operating system

Applications, services

Page | 103

Platform

Middleware and Openness
• In an open middleware-based distributed system, the protocols used by each middleware
layer should be the same, as well as the interfaces they offer to applications.

Typical Middleware Services
• Communication
• Naming
• Persistence
• Distributed transactions
• Security
Middleware Models
• Distributed files
– Examples?
• Remote procedure call
– Examples?

• Distributed objects
– Examples?
• Distributed documents
– Examples?
• Others?
– Message-oriented middleware (MOM)
– Service oriented architecture (SOA)
– Document-oriented
Middleware and the Operating System
• Middleware implements abstractions that support network-wide programming. Examples:
• RPC and RMI (Sun RPC, Corba, Java RMI)
• event distribution and filtering (Corba Event Notification, Elvin)

• resource discovery for mobile and ubiquitous computing
• support for multimedia streaming
• Traditional OS's (e.g. early Unix, Windows 3.0)
– simplify, protect and optimize the use of local resources
• Network OS's (e.g. Mach, modern UNIX, Windows NT)

Page | 104

– do the same but they also support a wide range of communication standards and
enable remote processes to access (some) local resources (e.g. files).
DOS vs. NOS vs. Middleware Discussion
• What is good/bad about DOS?
– Transparency
– Other issues have reduced success.
– Problems are often socio-technological.
• What is good/bad about NOS?
– Simple.
– Decoupled, easy to add/remove.
– Lack of transparency.
• What is good/bad about middleware?
– Easy to make multiplatform.
– Easy to start something new.
• But this can also be bad.
Types of Distributed Oss

System Description Main Goal

Tightly-coupled operating system for
DOS Hide and manage hardware multi-processors and homogeneous resources multicomputers

Loosely-coupled operating system for
NOS Offer local services to remote heterogeneous multicomputers (LAN and clients WAN)

Middleware Additional layer atop of NOS Provide distribution transparency
implementing general-purpose services

Illegitimate access

• Maliciously contrived code
• Benign code
– contains a bug
– have unanticipated behavior
• Example: read and write in File System
– Illegal user vs. access right control
– Access the file pointer variable directly (setFilePointerRandomly) vs. type-safe
language
• Type–safe language, e.g. Java or Modula-3
• Non-type-safe language, e.g. C or C++
Kernel and Protection

• Kernel
– always runs

Page | 105

•

•

Process and thread

Process
– A program in execution
– Problem: sharing between related activities are awkward and expensive
– Nowadays, a process consists of an execution environment together with one or
more threads
– an analogy at page 215
Thread
– Abstraction of a single activity
– Benefits
• Responsiveness
• Resource sharing
• Economy
• Utilization of MP architectures

– complete access privileges for the physical resources
• Different execution mode
– An address space: a collection of ranges of virtual memory locations, in each of

which a specified combination of memory access rights applies, e.g.: read only or
read-write
– supervisor mode (kernel process) / user mode (user process)
– Interface between kernel and user processes: system call trap
• The price for protection
– switching between different processes take many processor cycles
– a system call trap is a more expensive operation than a simple method call

The System Clock

Page | 106

Execution environment

• the unit of resource management
• Consist of
– An address space

– Thread synchronization and communication resources such as semaphores and
communication interfaces (e.g. sockets)
– Higher-level resources such as open files and windows
• Shared by threads within a process

Address space

• Address space
– a unit of management of a process’s virtual memory
– Up to 232 bytes and sometimes up to 264 bytes
– consists of one or more regions
• Region

– an area of continuous virtual memory that is accessible by the threads of the
owning process
• The number of regions is indefinite
– Support a separate stack for each thread

– access mapped file
– Share memory between processes
• Region can be shared
– Libraries
– Kernel
– Shared data and communication
– Copy-on-write

Page | 107

0

2N

Creation of new process in distributed system

• Creating process by the operation system
– Fork, exec in UNIX
• Process creation in distributed system
– The choice of a target host

– The creation of an execution environment, an initial thread

Choice of process host

• Choice of process host
– running new processes at their originator’s computer
– sharing processing load between a set of computers
• Load sharing policy

– Transfer policy: situate a new process locally or remotely?

Text

Stack

Heap

Auxiliary
regions

Page | 108

Threads concept and implementation

– Location policy: which node should host the new process?
• Static policy without regard to the current state of the system

• Adaptive policy applies heuristics to make their allocation decision
– Migration policy: when&where should migrate the running process?

• Load sharing system
– Centralized
– Hierarchical
– Decentralized
Creation of a new execution environment

• Initializing the address space
– Statically defined format
– With respect to an existing execution environment, e.g. fork
• Copy-on-write scheme

Page | 109

I/O

workers

remote

objects

Client and server with threads

Alternative server threading architectures

per-connectionthreads

remote

objects

a. Thread-per-request b.Thread-per-connection c. Thread-per-object

Threads versus multiple processes

• Creating a thread is (much) cheaper than a process (~10-20 times)
• Switching to a different thread in same process is (much) cheaper (5-50 times)
• Threads within same process can share data and other resources more conveniently and
efficiently (without copying or messages)
• Threads within a process are not protected from each other

State associated with execution environments and threads

per-objectthreads

I/O remote
objects

Page | 110

Threads implementation

Threads can be implemented:

– in the OS kernel (Win NT, Solaris, Mach)
– at user level (e.g. by a thread library: C threads, pthreads), or in the language

(Ada, Java).

+ lightweight - no system calls

+ modifiable scheduler

+ low cost enables more threads to be employed

- not pre-emptive
- can exploit multiple processors
- - page fault blocks all threads
– hybrid approaches can gain some advantages of both
- user-level hints to kernel scheduler
- hierarchic threads (Solaris 2)
- event-based (SPIN, FastThreads)

Page | 111

•

•

•

•

Implementation of invocation mechanisms

Communication primitives
– TCP(UDP) Socket in Unix and Windows
– DoOperation, getRequest, sendReply in Amoeba
– Group communication primitives in V system
Protocols and openness
– provide standard protocols that enable internetworking between middleware
– integrate novel low-level protocols without upgrading their application
– Static stack
• new layer to be integrated permanently as a ―driver‖
– Dynamic stack
• protocol stack be composed on the fly

• E.g. web browser utilize wide-area wireless link on the road and faster
Ethernet connection in the office
Invocation costs
– Different invocations
– The factors that matter

• synchronous/asynchronous, domain transition, communication across a
network, thread scheduling and switching
Invocation over the network
– Delay: the total RPC call time experienced by a client
– Latency: the fixed overhead of an RPC, measured by null RPC
– Throughput: the rate of data transfer between computers in a single RPC
– An example

• Threshold: one extra packet to be sent, might be an extra acknowledge
packet is needed
Invocations between address spaces

Page | 112

Support for communication and invocation
• The performance of RPC and RMI mechanisms is critical for effective distributed
systems.
– Typical times for 'null procedure call':
– Local procedure call < 1 microseconds
– Remote procedure call ~ 10 milliseconds

– 'network time' (involving about 100 bytes transferred, at 100 megabits/sec.)
accounts for only .01 millisecond; the remaining delays must be in OS and

middleware - latency, not communication time.
• Factors affecting RPC/RMI performance
– marshalling/unmarshalling + operation despatch at the server
– data copying:- application -> kernel space -> communication buffers

– thread scheduling and context switching:- including kernel entry
– protocol processing:- for each protocol layer
– network access delays:- connection setup, network latency

Improve the performance of RPC
• Memory sharing
– rapid communication between processes in the same computer
• Choice of protocol
– TCP/UDP
• E.g. Persistent connections: several invocations during one
– OS’s buffer collect several small messages and send them together
• Invocation within a computer
– Most cross-address-space invocation take place within a computer
– LRPC (lightweight RPC)
RPC delay against parameter size

Page | 113

0
2000

RPC delay

1000

Pack
et

size

Requested data
size (bytes)

Page | 114

A client stub marshals the call arguments into a message, sends the request message and
receives and unmarshals the reply.
At the server, a worker thread receives the incoming request, or an I/O threadreceives the
request and passes it to a worker thread; in either case, the worker calls the appropriate
server stub.
The server stub unmarshals the request message, calls the designated procedure, and
marshals and sends the reply.
The following are the main components accounting for remote invocation delay, besides

network transmission times:

Marshalling: Marshalling and unmarshalling, which involve copying and converting data, create
a significant overhead as the amount of data grows.
Data copying: Potentially, even after marshalling, message data is copied several times in the
course of an RPC:
1. across the user–kernel boundary, between the client or server address space and kernel
buffers;
2. across each protocol layer (for example, RPC/UDP/IP/Ethernet);
3. between the network interface and kernel buffers.
Transfers between the network interface and main memory are usually handled by direct
memory access (DMA). The processor handles the other copies.
Packet initialization: This involves initializing protocol headers and trailers, including
checksums. The cost is therefore proportional, in part, to the amount of data sent.
Thread scheduling and context switching: These may occur as follows:

1. Several system calls (that is, context switches) are made during an RPC, as stubs
invoke the kernel’s communication operations.
2. One or more server threads is scheduled.

3. If the operating system employs a separate network manager process, then each

Send involves a context switch to one of its threads.

Waiting for acknowledgements: The choice of RPC protocol may influence delay, particularly
when large amounts of data are sent.

Page | 115

A lightweight remote procedure call

Bershad's LRPC


 Uses shared memory for interprocess communication
– while maintaining protection of the two processes

– arguments copied only once (versus four times for convenitional RPC)

 Client threads can execute server code
– via protected entry points only (uses capabilities)
 Up to 3 x faster for local invocations

Page | 116

Asynchronous operation
• Performance characteristics of the Internet
– High latencies, low bandwidths and high server loads
– Network disconnection and reconnection.
– outweigh any benefits that the OS can provide
• Asynchronous operation
– Concurrent invocations
• E.g., the browser fetches multiple images in a home page by concurrent
GET requests
– Asynchronous invocation: non-blocking call
• E.g., CORBA oneway invocation: maybe semantics, or collect result by a
separate call
• Persistent asynchronous invocations
– Designed for disconnected operation
– Try indefinitely to perform the invocation, until it is known to have succeeded or
failed, or until the application cancels the invocation
– QRPC (Queued RPC)
• Client queues outgoing invocation requests in a stable log
• Server queues invocation results
• The issues to programmers
– How user can continue while the results of invocations are still not known?

The following figure shows the potential benefits of interleaving invocations (such as HTTP
requests) between a client and a single server on a single-processor machine. In the serialized
case, the client marshals the arguments, calls the Send operation and then waits until the reply
from the server arrives – whereupon it Receives, unmarshals and then processes the results. After
this it can make the second invocation.

suit different users or applications.

Page | 117

Times for serialized and concurrent invocations

In the concurrent case, the first client thread marshals the arguments and calls the Send
operation. The second thread then immediately makes the second invocation. Each thread
waits to receive its results. The total time taken is liable to be lower than in the serialized
case, as the figure shows. Similar benefits apply if the client threads make concurrent
requests to several servers, and if the client executes on a multiprocessor even greater
throughput is potentially possible, since the two threads’ processing can also be
overlapped.

Operating System Architecture


 A key principle of distributed systems is openness.

 The major kernel architectures:

 Monolithic kernels

 Micro-kernels

 An open distributed system should make it possible to:


 Run only that system software at each computer that is necessary for its particular
role in the system architecture. For example, system software needs for PDA and

dedicated server are different. Loading redundant modules wastes memory
resources.
 Allow the software (and the computer) implementing any particular service to be
changed independent of other facilities.

 Allow for alternatives of the same service to be provided, when this is required to

Page | 118

.......

Languag
e
support
subsyste

m

Middleware

Languag
e support
subsyste

m

OS emulation
subsystem

.......

....

MonolithicKernel Microkernel
Key:

Server: Kernelcodeanddata: Dynamically loaded serverprroagm :

 Microkernel

 The microkernel appears as a layer between hardware layer and a layer consisting

of major systems.
If performance is the goal, rather than portability, then middleware may use the
facilities of the microkernel directly.

The role of the microkernel

 Introduce new services without harming the integrity of existing ones.
A guiding principle of operating system design:

The separation of fixed resource management ―mechanisms― from resource
management ―policies‖, which vary from application to application and service to

service.


 For example, an ideal scheduling system would provide mechanisms that enable a
multimedia application such as videoconferencing to meet its real-time demands

The kernel would provide only the most basic mechanisms upon which the
general resource management tasks at a node are carried out.
 Server modules would be dynamically loaded as required, to implement the
required resourced management policies for the currently running applications.
 while coexisting with a non-real-time application such as web browsing.
Monolithic Kernels
 A monolithic kernel can contain some server processes that execute within its
address space, including file servers and some networking.
 The code that these processes execute is part or the standard kernel configuration.
Monolithic kernel and microkernel











S4

S1 S2 S3
.......

S1

S2

S3

S4

Page | 119

The Amoeba System Architecture

Assumes that a large number of CPUsare available and that each CPU ha 10s of Mb of
memory
CPUs are organised into processor pools

Microkernel

Hardware

The microkernel supports middleware via subsystems

 Monolithic and Microkernel comparison

 The advantages of a microkernel

 Its extensibility

 Its ability to enforce modularity behind memory protection boundaries.

 Its small kernel has less complexity.

 The advantages of a monolithic


 The relative efficiency with which operations can be invoked because
even invocation to a separate user-level address space on the same node is

more costly.

 Hybrid Approaches


 Pure microkernel operating system such as Chorus & Mach have changed over a
time to allow servers to be loaded dynamically into the kernel address space or

into a user-level address space.
In some operating system such as SPIN, the kernel and all dynamically loaded
modules grafted onto the kernel execute within a single address space
Case Study of a Distributed Operating System

Introduction to Amoeba

Originated at a university in Holland, 1981
Currently used in various EU countries
Built from the ground up. UNIX emulation added later
Goal was to build a transparent distributed operating system

Resources, regardless of their location, are managed by the system, and the user is
unaware of where processes are actually run

Page | 120

 CPUs do not need to be of the same architecture (can mix SPARC, Motorola PowerPC,
680x0, Intel, Pentium, etc.)
When a user types a command, system determines which CPU(s) to execute it on. CPUs
can be timeshared.
Terminals are X-terminals or PCs running X emulators
The processor pool doesn't have to be composed of CPU boards enclosed in a cabinet,
they can be on PCs, etc., in different rooms, countries,...
Some servers (e.g., file servers) run on dedicated processors, because they need to be
available all the time
The Amoeba Microkernel

The Amoeba microkernel is used on all terminals (with an on-board processor),
processors, and servers
The microkernel

manages processes and threads

provides low-level memory management support

supports interprocess communication (point-to-point and group)

handles low-level I/O for the devices attached to the machine

The Amoeba Servers: Introduction

OS functionality not provided by the microkernel is performed by Amoeba servers
To use a server, the client calls a stub procedure which marshalls parameters, sends the
message, and blocks until the result comes back

Server Basics

Amoeba uses capabilities
Every OS data structure is an object, managed by a server
To perform an operation on an object, a client performs an RPC with the appropriate
server, specifying the object, the operation to be performed and any parameters needed.
The operation is transparent (client does not know where server is, nor how the operation
is performed)
Capabilites

To create an object the client performs an RPC with the server

Server creates the object and returns a capability

To use the object in the future, the client must present the correct capability

Page | 121

Client can send this new capability to another process

Process Management

All processes are objects protected by capabilities
Processes are managed at 3 levels
by process servers, part of the microkernel

by library procedures which act as interfaces

by the run server, which decides where to run the processes

Process management uses process descriptors

Contains:

platform description

process' owner's capability

etc

The check field is used to protect the capability against forgery

Object protection
When an object is created, server generates random check field, which it stores both in
the capability and in its own tables

The rights bits in the capability are set to on

The server sends the owner capability back to the client

Creating a capability with restricted rights

Page | 122

Communication

Point-to-point (RPC) and Group

Memory Management

Designed with performance, simplicity and economics in mind
Process occupies contiguous segments in memory
All of a process is constantly in memory
Process is never swapped out or paged

The Amoeba Servers

The File System

Consists of the Bullet (File) Server, the Directory Server, and the Replication Server

The Bullet Server

Designed to run on machines with large amounts of RAM and huge local disks
Used for file storage
Client process creates a file using the create call
Bullet server returns a capability that can be used to read the file with
Files are immutable, and file size is known at file creation time. Contiguous allocation
policies used
The Directory Server

Used for file naming
Maps from ASCII names to capabilities
Directories also protected by capabilities

Directory server can be used to name ANY object, not just files and directories
The Replication Server

Used for fault tolerence and performance
Replication server creates copies of files, when it has time
Other Amoeba Servers

The Run Server
When user types a command, two decisions have to be made

Page | 123

On which architecture should the process be

run? Which processor should be chosen?

Run server manages the processor pools

Uses processes process descriptor to identify appropriate target architecture
Checks which of the available processors have sufficient memory to run the process
Estimates which of the remaining processor has the most available compute power

The Boot Server

Provides a degree of fault tolerance
Ensures that servers are up and running
If it discovers that a server has crashed, it attempts to restart it, otherwise selects another
processor to provide the service
Boot server can be replicated to guard against its own failure

PEER-TO-PEER SYSTEMS
Peer-to-peer (P2P) computing or networking is a distributed application architecture that partitions

tasks or work loads between peers. Peers are equally privileged, equipotent participants in the
application. They are said to form a peer-to-peer network of nodes.
Peers make a portion of their resources, such as processing power, disk storage or network and
width, directly available to other network participants, without the need for central coordination by

Page | 124

servers or stable hosts.[1] Peers are both suppliers and consumers of resources, in
contrast to the traditional client-server model in which the consumption and supply of
resources is divided. Emerging collaborative P2P systems are going beyond the era of
peers doing similar things while sharing resources, and are looking for diverse peers that
can bring in unique resources and capabilities to a virtual community thereby
empowering it to engage in greater tasks beyond those
that can be accomplished by individual peers, yet that are beneficial to all the peers.[2]

While P2P systems had previously been used in many application domains,[3] the

architecture was
popularized by the file sharing system Napster, originally released in 1999. The concept hasinspired
new structures and philosophies in many areas of human interaction. In such social

contexts, peer-
to-peer as a meme refers to theegalitarian social networking that has emergedthroughout society,
enabled by Internettechnologies in general.
The demand for services in the Internet can be expected to grow to a scale that is limited
only by the
size of the world’s population. The goal of peer-to-peer systems is to enable the sharing of
data and
resources on a very large scale by eliminating any requirement for separately managed
servers and
their associated infrastructure. The scope for expanding popular services by adding to the
number of
the computers hosting them is limited when all the hosts must be owned and managed by
the service
provider. Administration and fault recovery costs tend to dominate. The network bandwidth
that can
be provided to a single server site over available physical links is also a major constraint.
System-
level services such as Sun NFS (Section 12.3), the Andrew File System (Section 12.4) or
video
servers (Section 20.6.1) and application-level services such as Google, Amazon or eBay all
exhibit
this problem to varying degrees.

Peer-to-peer systems aim to support useful distributed services and applications using data

and
computing resources available in the personal computers and workstations that arepresent in the
Internet and other networks in ever-increasing numbers. This is increasingly attractive as the
performance difference between desktop and server machines narrows and broadbandnetwork
connections proliferate. But there is another, broader aim: has defined peer-topeer

applications as
‘applications that exploit resources available at the edges of the Internet – storage,cycles, content,
human presence’. Each type of resource sharing mentioned in that definition is already

represented
by distributed applications available for most types of personal computer. The purpose ofthis
chapter is to describe some general techniques that simplify the construction of peer-to-

peer
applications and enhance their scalability, reliability and security.
Traditional client-server systems manage and provide access to resources such as files, web

g

https://en.wikipedia.org/wiki/Peer-to-peer#cite_note-1
https://en.wikipedia.org/wiki/Client-server
https://en.wikipedia.org/wiki/Peer-to-peer#cite_note-1
https://en.wikipedia.org/wiki/Peer-to-peer#cite_note-CP2P-2
https://en.wikipedia.org/wiki/Peer-to-peer#cite_note-CP2P-2
https://en.wikipedia.org/wiki/Peer-to-peer#cite_note-D._Barkai.2C_2002-3
https://en.wikipedia.org/wiki/Napster
https://en.wikipedia.org/wiki/Napster
https://en.wikipedia.org/wiki/Peer-to-peer_(meme)
https://en.wikipedia.org/wiki/Peer-to-peer_(meme)
https://en.wikipedia.org/wiki/Peer-to-peer_(meme)
https://en.wikipedia.org/wiki/Egalitarianism
https://en.wikipedia.org/wiki/Internet

Page | 125

Note that in step 5clients are expected to add their own music files to the pool of shared
resources by transmitting a link to the Napster indexing service for each available file. Thus
the motivation for Napster and the key to its success was the making available of a large,
widely distributed set of files to users throughout the Internet, fulfilling Shirky’s dictum by
providing access to ‘shared resources at the edges of the Internet’. Napster was shut down
as a result of legal proceedings instituted against the operators of the Napster service by the
owners of the copyright in some of the material

servers. With such centralized designs, few decisions are required about the placement of
the
resources or the management of server hardware resources, but the scale of the service is
limited by the server hardware capacity and network connectivity. Peer-to-peer systems
provide access to information resources located on computers throughout a network
(whether it be the Internet or a corporate network). Algorithms for the placement and
subsequent retrieval of information objects
are a key aspect of the system design. The aim is to deliver a service that is fully
decentralized and
self-organizing, dynamically balancing the storage and processing loads between all the
participating computers as computers join and leave the service. Peer-to-peer systems share
these
characteristics:
• Their design ensures that each user contributes resources to the system.
• Although they may differ in the resources that they contribute, all the nodes in a peer-to-
peer
system have the same functional capabilities and responsibilities.
• Their correct operation does not depend on the existence of any centrally administered
systems.
• They can be designed to offer a limited degree of anonymity to the providers and users of
resources.
• A key issue for their efficient operation is the choice of an algorithm for the placement
of data
across many hosts and subsequent access to it in a manner that balances the workload
and ensures
availability without adding undue overheads.
Napster and its legacy
The first application in which a demand for a globally scalable information storage and
retrieval
service emerged was the downloading of digital music files. Both the need for and the
feasibility of
a peer-to-peer solution were first demonstrated by the Napster filesharing system
[OpenNap 2001] which provided a means for users to share files. Napster became very
popular for music exchange soon after its launch in 1999. At its peak, several million users
were registered and thousands were swapping music files simultaneously. Napster’s
architecture included centralized indexes, but users supplied the files, which were stored
and accessed on their personal computers. Napster’s method of operation is illustrated by
the sequence of steps shown in Figure 10.2.

Page | 126

(i.e., digitally encoded music) that was made available on it (see the box below). Anonymity
for the receivers and the providers of shared data and other resources is a concern for the
designers of peer- to-peer systems. In systems with many nodes, the routing of requests
and results can be made sufficiently tortuous to conceal their source and the contents of
files can be distributed across multiple nodes, spreading the responsibility for making them
available. Mechanisms for anonymous communication that are resistant to most forms of
traffic analysis are available If files are also
encrypted before they are placed on servers, the owners of the servers can plausibly deny
any
knowledge of the contents. But these anonymity techniques add to the cost of resource
sharing, and
recent work has shown that the anonymity available is weak against some attacks The
Freenet
projects are focused on providing Internet-wide file services that offer anonymity for the
providers
and users of the shared files. Ross Anderson has proposed the Eternity Service , a
storage service
that provides long-term guarantees of data

Peer-to-peer systems and copyright ownership issues

The developers of Napster argued that they were not liable for the infringement of the
copyright owners’ rights because they were not participating in the copying process, whichwas
performed entirely between users’ machines. Their argument failed because the index

servers were
deemed an essential part of the process. Since the index servers were located at well-known
addresses, their operators were unable to remain anonymous and so could be targeted in
lawsuits.
A more fully distributed file-sharing service might have achieved a better separation of legal
responsibilities, spreading the responsibility across all of the users and thus making the
pursuit of
legal remedies very difficult, if not impossible.
Whatever view one takes about the legitimacy of file copying for the purpose of sharing
copyright-
protected material, there are legitimate social and political justifications for the anonymityof clients
and servers in some application contexts. The most persuasive justification arises when
anonymity is
used to overcome censorship and maintain freedom of expression for individuals inoppressive
societies or organizations. It is known that email and web sites have played a significant role

in
achieving public awareness at times of political crisis in such societies; their role could be
strengthened if the authors could be protected by anonymity.

Peer-to-peer middleware systems are designed specifically to meet the need for theautomatic
placement and subsequent location of the distributed objects managed by peer-to-peer

systems and
applications.
Functional requirements • The function of peer-to-peer middleware is to simplify the

construction
of services that are implemented across many hosts in a widely distributed network. Toachieve this
it must enable clients to locate and communicate with any individual resource made

available to a
service, even though the resources are widely distributed amongst the hosts. Otherimportant
requirements include the ability to add new resources and to remove them at will and to

Page | 127

considering, this will be achieved by a random placement of resources together with the use
of replicas of heavily used resources.
Optimization for local interactions between neighbouring peers: The ‘network distance’
between
nodes that interact has a substantial impact on the latency of individual interactions, such
as client
requests for access to resources. Network traffic loadings are also impacted by it. The
middleware
should aim to place resources close to the nodes that access them the most.

Accommodating to highly dynamic host availability: Most peer-to-peer systems are
constructed from host computers that are free to join or leave the system at any time. The
hosts and
network segments used in peer-to-peer systems are not owned or managed by any single
authority;
neither their reliability nor their continuous participation in the provision of a service is
guaranteed.
A major challenge for peerto- peer systems is to provide a dependable service despite these
facts. As
hosts join the system, they must be integrated into the system and the load must be
redistributed
to exploit their resources. When they leave the system whether voluntarily or involuntarily,
the
system must detect their departure and redistribute their load and resources.

Routing overlays

In peer-to-peer systems a distributed algorithm known as a routing overlay takes

responsibility for
locating nodes and objects. The name denotes the fact that the middleware takes the formof a layer
that is responsible for routing requests from any client to a host that holds the object to

which the
request is addressed. The objects of interest may be placed at and subsequently relocatedto any node
in the network without client involvement. It is termed an overlay since it implements a

routing
mechanism in the application layer that is quite separate from any other routingmechanisms
deployed at the network level such as IP routing. The routing overlay ensures that any

node can
access any object by routing each request through a sequence of nodes, exploitingknowledge at
each of them to locate the destination object. Peer-to-peer systems usually store multiple

replicas of
objects to ensure availability. In that case, the routing overlay maintains knowledge of thelocation
of all the available replicas and delivers requests to the nearest ‘live’ node (i.e. one that

has not
failed) that has a copy of the relevant object. The GUIDs used to identify nodes andobjects are an
example of the ‘pure’ names. These are also known as opaque identifiers, since they reveal

nothing
about the locations of the objects to which they refer. The main task of a routing overlay isthe
following:
Routing of requests to objects: A client wishing to invoke an operation on an object submits a
request including the object’s GUID to the routing overlay, which routes the request to a
node at
which a replica of the object resides.

Page | 128

2001], an archival (immutable) file storage system implemented as a distributed hash table with the

API and Squirrel, a peerto- peer web caching service described. Pastry has a straightforward but
effective design that makes it a good first example for us to study in detail. Tapestry is the basis for
the OceanStore storage system, which we describe in . It has a more complex architecture than
Pastry because it aims to support a wider range of locality approaches.
Pastry
All the nodes and objects that can be accessed through Pastry are assigned 128-bit GUIDs.
For nodes, these are computed by applying a secure hash function to the public key with which each
node is provided. For objects such as files, the GUID is computed by applying a secure hash
function to the object’s name or to some part of the object’s stored state. The resulting GUIDs have
the usual properties of secure hash values – that is, they are randomly distributed in the range 0 to
2128–1. They provide no clues as to the value from which they were computed, and clashes between
GUIDs for different nodes or objects are extremely unlikely. (If a clash occurs, Pastry detects it and
takes remedial action.) In a network with N participating nodes, the Pastry routing algorithm will
correctly route a message addressed to any GUID in O(log N) steps. If the GUID identifies a node
that is currently active, the message is delivered to that node; otherwise, the message is delivered to
the active node whose GUID is numerically closest to it. Active nodes take responsibility for
processing requests addressed to all objects in their numerical neighbourhood. Routing steps involve
the use of an underlying transport protocol (normally UDP) to transfer the message to a Pastry node
that is ‘closer’ to its destination. But note that the closeness referred to here is in an entirely artificial
space – the space of GUIDs. The real transport of a message across the Internet between two Pastry
nodes may require a substantial number of IP hops.

Page | 129

 UNIT IV

Distributed File Systems: Introduction, File service Architecture, Case Study1: Sun Network File Syste
Case Study 2: The Andrew File System.
Name Services: Introduction, Name Services and the Domain Name System, Directory Services, Case st
of the Global Name Service.
Distributed Shared Memory: Introduction Design and Implementation issues, Sequential consistency
Ivy case study, Release consistency and Munin case study, other consistency models.

DISTRIBUTED FILE SYSTEMS

A file system is responsible for the organization, storage, retrieval, naming, sharing, and
protection of files. File systems provide directory services, which convert a file name (possibly a
hierarchical one) into an internal identifier (e.g. inode, FAT index). They contain a
representation of the file data itself and methods for accessing it (read/write). The file system is
responsible for controlling access to the data and for performing low-level operations such as
buffering frequently used data and issuing disk I/O requests.
A distributed file system is to present certain degrees of transparency to the user and the system:
Access transparency: Clients are unaware that files are distributed and can access them in the
same way as local files are accessed.
Location transparency: A consistent name space exists encompassing local as well as remote
files. The name of a file does not give it location.
Concurrency transparency: All clients have the same view of the state of the file system. This
means that if one process is modifying a file, any other processes on the same system or remote
systems that are accessing the files will see the modifications in a coherent manner.
Failure transparency: The client and client programs should operate correctly after a server
failure.
Heterogeneity: File service should be provided across different hardware and operating system
platforms.
Scalability: The file system should work well in small environments (1 machine, a dozen
machines) and also scale gracefully to huge ones (hundreds through tens of thousands of
systems).
Replication transparency: To support scalability, we may wish to replicate files across
multiple servers. Clients should be unaware of this.
Migration transparency: Files should be able to move around without the client's knowledge.
Support fine-grained distribution of data: To optimize performance, we may wish to locate

Page | 130

individual objects near the processes that use them.
Tolerance for network partitioning: The entire network or certain segments of it may be
unavailable to a client during certain periods (e.g. disconnected operation of a laptop). The file
system should be tolerant of this.

File service types

To provide a remote system with file service, we will have to select one of two models of
operation. One of these is the upload/download model. In this model, there are two fundamental
operations: read file transfers an entire file from the server to the requesting client, and write file
copies the file back to the server. It is a simple model and efficient in that it provides local access
to the file when it is being used. Three problems are evident. It can be wasteful if the client needs
access to only a small amount of the file data. It can be problematic if the client doesn't have
enough space to cache the entire file. Finally, what happens if others need to modify the same
file?
The second model is a remote access model. The file service provides remote operations such as
open, close, read bytes, write bytes, get attributes, etc. The file system itself runs on servers. The
drawback in this approach is the servers are accessed for the duration of file access rather than
once to download the file and again to upload it.
Another important distinction in providing file service is that of understanding the difference
between directory service and file service. A directory service, in the context of file systems,
maps human-friendly textual names for files to their internal locations, which can be used by the
file service. The file service itself provides the file interface (this is mentioned above). Another
component of file distributed file systems is the client module. This is the client-side interface for
file and directory service. It provides a local file system interface to client software (for example,
the vnode file system layer of a UNIX kernel).

Introduction
 File system were originally developed for centralized computer systems and desktop
computers.
 File system was as an operating system facility providing a convenient programming
interface to disk storage.
 Distributed file systems support the sharing of information in the form of files and
hardware resources.
 With the advent of distributed object systems (CORBA, Java) and the web, the picture
has become more complex.
 Figure 1 provides an overview of types of storage system.

Page | 131

Figure 1. Storage systems and their properties

Figure 2 shows a typical layered module structure for the implementation of
a non- distributed file system in a conventional operating system.

Figure 2. File system modules

File systems are responsible for the organization, storage, retrieval, naming,
sharing and protection of files.
Files contain both data and attributes.
A typical attribute record structure is illustrated in Figure 3.

Figure 3. File attribute record structure








Page | 132



 Distributed File system requirements

 Related requirements in distributed file systems are:

 Transparency

 Concurrency

 Replication

 Heterogeneity

 Fault tolerance

 Consistency

 Security

 Efficiency
Case studies
File service architecture • This is an abstract architectural model that underpins both
NFS and AFS. It is based upon a division of responsibilities between three modules – a
client module that emulates a conventional file system interface for application
programs, and server modules, that perform operations for clients on directories and on
files. The architecture is designed to enable a stateless implementation of the server
module.

SUN NFS • Sun Microsystems’s Network File System (NFS) has been widely adopted
in industry and in academic environments since its introduction in 1985. The design
and development of NFS were undertaken by staff at Sun Microsystems in 1984.
Although several distributed file services had already been developed and used in
universities and research laboratories, NFS was the first file service that was designed
as a product. The design and implementation of NFS have achieved success both
technically and commercially.

Andrew File System • Andrew is a distributed computing environment developed at
Carnegie Mellon University (CMU) for use as a campus computing and information
system. The design of the Andrew File System (henceforth abbreviated AFS) reflects

Figure 4 summarizes the main operations on files that are available to
applications in UNIX systems.

Page | 133

an intention to support information sharing on a large scale by minimizing client-server
communication. This is achieved by transferring whole files between server and client
computers and caching them at clients until the server receives a more up-to-date
version.

File Service Architecture


 An architecture that offers a clear separation of the main concerns in providing access
to files is obtained by structuring the file service as three components:
 A flat file service

 A directory service

 A client module.

 The relevant modules and their relationship is shown in Figure 5.
Figure 5. File service architecture

The Client module implements exported interfaces by flat file and directory services
on server side.
Responsibilities of various modules can be defined as follows:

 Flat file service:


 Concerned with the implementation of operations on the contents of file.
Unique File Identifiers (UFIDs) are used to refer to files in all requests

for
flat file service operations. UFIDs are long sequences of bits chosen
so that each file has a unique among all of the files in a distributed
system.
 Directory service:


 Provides mapping between text names for the files and their UFIDs.
Clients may obtain the UFID of a file by quoting its text name to

directory service. Directory service supports functions needed generate
directories, to add new files to directories.
 Client module:


 It runs on each computer and provides integrated service (flat file and
directory) as a single API to application programs. For example, in

UNIX hosts, a client module emulates the full set of Unix file
operations.




Page | 134



Figure 6. Flat file service operations

 It holds information about the network locations of flat-file and
directory server processes; and achieve better performance through

implementation of a cache of recently used file blocks at the client.
Flat file service interface:
 Figure 6 contains a definition of the interface to a flat file service.

 Access control


 In distributed implementations, access rights checks have to be
performed at the server because the server RPC interface is an

otherwise unprotected point of access to files.

 Directory service interface


 Figure 7 contains a definition of the RPC interface to a directory service.
Figure 7. Directory service operations

Page | 135





DFS: Case Studies

NFS (Network File System)
 Developed by Sun Microsystems (in 1985)

 Most popular, open, and widely used.

 NFS protocol standardized through IETF (RFC 1813)
AFS (Andrew File System)
 Developed by Carnegie Mellon University as part of Andrew distributed
computing environments (in 1986)
 A research project to create campus wide file system.

 Public domain implementation is available on Linux (LinuxAFS)

 It was adopted as a basis for the DCE/DFS file system in the Open Software

Foundation (OSF, www.opengroup.org) DEC (Distributed Computing
Environment
NFS architecture

Figure 8 shows the architecture of Sun NFS

 Hierarchic file system


 A hierarchic file system such as the one that UNIX provides consists of a
number of directories arranged in a tree structure.
 File Group

 A file group is a collection of files that can be located on any server or

moved between servers while maintaining the same names.
– A similar construct is used in a UNIX file system.
– It helps with distributing the load of file serving between several
servers.
– File groups have identifiers which are unique throughout the
system (and hence for an open system, they must be globally
unique).

To construct globally unique ID we use some unique attribute of the machine on which it
is created. E.g: IP number, even though the file group may move subsequently.

Page | 136









The file identifiers used in NFS are called file handles.

A simplified representation of the RPC interface provided by NFS version 3
servers is shown in Figure 9.

Figure 9. NFS server operations (NFS Version 3 protocol, simplified)

 NFS access control and authentication

 The NFS server is stateless server, so the user's identity and access rights must be

checked by the server on each request.
 In the local file system they are checked only on the file’s access
permission attribute.
 Every client request is accompanied by the userID and groupID

 It is not shown in the Figure 8.9 because they are inserted by the RPC
system.
 Kerberos has been integrated with NFS to provide a stronger and more
comprehensive security solution.

Mount service
 Mount operation:

Page | 137

Remote Remote

big

(root)

export

people

jo bo n
b

. . .

. .

.

mou
nt

stude
nts

vmu
nix

x

ff

us
r

sta

mount(remotehost, remotedirectory, localdirectory)

mou
nt

jim
ann

nf
s

users

Figure 10. Local and remote file systems accessible on an NFS client

Server Client Server 2
1 (root) (root)

jane joe

Server maintains a table of clients who have mounted filesystems at that
server. Each client maintains a table of mounted file systems holding:
< IP address, port number, file handle>
Remote file systems may be hard-mounted or soft-mounted in a client
computer. Figure 10 illustrates a Client with two remotely mounted file
stores.








Page | 138







 NFS v3 servers offers two strategies for updating the disk:


 Write-through - altered pages are written to disk as soon as they are
received at the server. When a write() RPC returns, the NFS client knows

that the page is on the disk.


 Delayed commit - pages are held only in the cache until a commit() call is
received for the relevant file. This is the default mode used by NFS v3

clients. A commit() is issued by the client whenever a file is closed.
Client caching
 Server caching does nothing to reduce RPC traffic between client and server

 further optimization is essential to reduce server load in large networks.

 NFS client module caches the results of read, write, getattr, lookup and
readdir operations
 synchronization of file contents (one-copy semantics) is not guaranteed
when two or more clients are sharing the same file.
 Timestamp-based validity check

 It reduces inconsistency, but doesn't eliminate it.


 It is used for validity condition for cache entries at the client:
(T - Tc < t) v (Tmclient = Tmserver)

 Automounter

 The automounter was added to the UNIX implementation of NFS in order to
mount a remote directory dynamically whenever an ‘empty’ mount point is
referenced by a client.

 Automounter has a table of mount points with a reference to one or more
NFS servers listed against each.
 it sends a probe message to each candidate server and then uses the mount
service to mount the file system at the first server to respond.
 Automounter keeps the mount table small.

 Automounter Provides a simple form of replication for read-only file systems.

 E.g. if there are several servers with identical copies of /usr/lib then each
server will have a chance of being mounted at some clients.
Server caching

 Similar to UNIX file caching for local files:


 pages (blocks) from disk are held in a main memory buffer cache until the
space is required for newer pages. Read-ahead and delayed-write

optimizations.


 For local files, writes are deferred to next sync event (30 second intervals).

 Works well in local context, where files are always accessed through the
local cache, but in the remote case it doesn't offer necessary
synchronization guarantees to clients.

Page | 139










it is configurable (per file) but is typically set to 3 seconds for files and 30
secs. for directories.
it remains difficult to write distributed
applications that share files with NFS.
Other NFS optimizations

 Sun RPC runs over UDP by default (can use TCP if required).

 Uses UNIX BSD Fast File System with 8-kbyte blocks.

 reads() and writes() can be of any size (negotiated between client and server).


 The guaranteed freshness interval t is set adaptively for individual files to reduce
getattr() calls needed to update Tm.
 File attribute information (including Tm) is piggybacked in replies to all file
requests.
NFS performance

 Early measurements (1987) established that:

 Write() operations are responsible for only 5% of server calls in typical
UNIX environments.
 hence write-through at server is acceptable.

 Lookup() accounts for 50% of operations -due to step-by-step pathname
resolution necessitated by the naming and mounting semantics.
 More recent measurements (1993) show high performance.

 see www.spec.org for more recent measurements.
NFS summary
 NFS is an excellent example of a simple, robust, high-performance distributed
service.
 Achievement of transparencies are other goals of NFS:

 Access transparency:

 The API is the UNIX system call interface for both local and
remote files.
 Location transparency:


 Naming of filesystems is controlled by client mount operations, but
transparency can be ensured by an appropriate system

configuration.

 Mobility transparency:

 Hardly achieved; relocation of files is not possible, relocation of
filesystems is possible, but requires updates to client
configurations.

 Scalability transparency:

File systems (file groups) may be subdivided and allocated to

http://www.spec.org/

Page | 140

separate servers.
Replication transparency:
– Limited to read-only file systems; for writable files, the SUN
Network Information Service (NIS) runs over NFS and is used to
replicate essential system files.
Hardware and software operating system heterogeneity:

– NFS has been implemented for almost every known operating
system and hardware platform and is supported by a variety of
filling systems.
Fault tolerance:
– Limited but effective; service is suspended if a server fails.
Recovery from failures is aided by the simple stateless design.
Consistency:
– It provides a close approximation to one-copy semantics and meets
the needs of the vast majority of applications.
– But the use of file sharing via NFS for communication or close
coordination between processes on different computers cannot be
recommended.
Security:
– Recent developments include the option to use a secure RPC
implementation for authentication and the privacy and security of
the data transmitted with read and write operations.
– Efficiency:


 NFS protocols can be implemented for use in situations that
generate very heavy loads.

Case Study: The Andrew File System (AFS)

AFS differs markedly from NFS in its design and implementation. The differences are primarily
attributable to the identification of scalability as the most important design goal. AFS is designed
to perform well with larger numbers of active users than other distributed file systems. The key
strategy for achieving scalability is the caching of whole files in client nodes. AFS has two
unusual design characteristics:

Whole-file serving: The entire contents of directories and files are transmitted to client computers
by AFS servers (in AFS-3, files larger than 64 kbytes are transferred in 64-kbyte chunks).
Whole file caching: Once a copy of a file or a chunk has been transferred to a client computer it
is stored in a cache on the local disk. The cache contains several hundred of the files most
recently used on that computer. The cache is permanent, surviving reboots of the client
computer. Local copies of files are used to satisfy clients’ open requests in preference to remote
copies whenever possible.


 Like NFS, AFS provides transparent access to remote shared files for UNIX programs

running on workstations.
 AFS is implemented as two software components that exist at UNIX processes called
Vice and Venus.











Page | 141

Figure 11. Distribution of processes in the Andrew File System

Workstations Servers

3. Subsequent read, write and other operations on the file by processes in the client
computer are applied to the local copy.

4. When the process in the client issues a close system call, if the local copy has been
updated its contents are sent back to the server. The server updates the filecontents and the
timestamps on the file. The copy on the client’s local disk is retained in case it is

needed
again by a user-level process on the same workstation.

Scenario • Here is a simple scenario illustrating the operation of AFS:

1. When a user process in a client computer issues an open system call for a file in the shared
-file space and there is not a current copy of the file in the local cache, the server holding the
file is located and is sent a request for a copy of the file.
2. The copy is stored in the local UNIX file system in the client computer. The copy is then
opened and the resulting UNIX file descriptor is returned to the client.

User
Venus
program

User Venus
program

UNIX kernel

User Venus
program
UNIX kernel

Network

Vice

Vice

UNIX kernel

UNIX kernel

Page | 142

User

program

Loca
l
disk

UNIX file Non-local file
systemcalls operations

UNIX kernel

UNIX filesystem

Veennuuss













Workstation

Figure 13. System call interception in AFS

The files available to user processes running on workstations are either local or
shared. Local files are handled as normal UNIX files.
They are stored on the workstation’s disk and are available only to local user
processes. Shared files are stored on servers, and copies of them are cached on
the local disks of workstations.
The name space seen by user processes is illustrated in Figure 12.
Figure 12. File name space seen by clients of AFS

Local Shared

The UNIX kernel in each workstation and server is a modified version of BSD UNIX.
The modifications are designed to intercept open, close and some other file system calls when
they refer to files in the shared name space and pass them to the Venus process in the client
computer. (Figure 13)

tmp bin . . .

Symbolic
links

vmunix

/ (root)

cmu

bin

Page | 143

 Figure 14 describes the actions taken by Vice, Venus and the UNIX kernel when a user process
issues system calls.

Figure 14. implementation of file system calls in AFS

User process UNIX kernel Venus Net Vice
open(FileNam If FileName e, mode) refers to a file
in shared file space, pass the Check list of request to files in local cache. If not Venus. present or there is no
valid callback
promis,e
send a request
for the file to Transfer a copy the Vice server

that is of the file and a
custodian of the volume callback
containing the promiseto the file. workstation.
Log the
Open the local callback
file and return Place the copy promise.
the file of the file in the
descriptor to the local file
application.
read(FileDesc system, enter
rileupnftogfer, thr),Perform a itasm loecal inthe localcache normal UNIX list and return
read operation the local name
write(FileDes on the local to UNIX.
criptor, copy.
Buffer, Perform a
normal length) UNIX write
operation on the
local copy.
close(FileDescriptor) Close the local copy
aVnednus thnatotify If the
t
lhocealficleophyashabseen closed.

been changed, Replace the file
copy to the Vice server senda contents and

that is the send a callback
custodian of the to all other

file. clients holdin
gca llback

promiseson the
file.

Page | 144



Figure 15. The main components of the Vice service interface

Figure 15 shows the RPC calls provided by AFS servers for operations on files.

Other aspects
AFS introduces several other interesting design developments and refinements that we
outline here, together with a summary of performance evaluation results:

1. UNIX kernel modifications
2. Location database
3. Threads
4. Read-only replicas
5. Bulk transfers
6. Partial file caching
7. Performance
8. Wide area support

Page | 145

Naming Services

Which one is easy for humans and machines? and why?
74.125.237.83 or google.com

 128.250.1.22 or distributed systems website
128.250.1.25 or Prof. Buyya
 Disk 4, Sector 2, block 5 OR /usr/raj/hello.c
Introduction
 In a distributed system, names are used to refer to a wide variety of resources such as:

 Computers, services, remote objects, and files, as well as users.

 Naming is fundamental issue in DS design as it facilitates communication and resource
sharing.
 A name in the form of URL is needed to access a specific web page.


 Processes cannot share particular resources managed by a computer system unless
they can name them consistently
 Users cannot communicate within one another via a DS unless they can name one
another, with email address.
 Names are not the only useful means of identification: descriptive attributes are another.
What are Naming Services?
 How do Naming Services facilitate communication and resource sharing?
– An URL facilitates the localization of a resource exposed on the Web.
 e.g., abc.net.au means it is likely to be an Australian entity?
– A consistent and uniform naming helps processes in a distributed system to
interoperate and manage resources.

 e.g., commercials use .com; non-profit organizations use .org
– Users refers to each other by means of their names (i.e. email) rather than their
system ids
– Naming Services are not only useful to locate resources but also to gather
additional information about them such as attributes

What are Naming Services?
In a Distributed System, a Naming Service is a specific service whose aim is to provide a
consistent and uniform naming of resources, thus allowing other programs or services to localize
them and obtain the required metadata for interacting with them.
Key benefits
– Resource localization
– Uniform naming
– Device independent address (e.g., you can move domain name/web site from one
server to another server seamlessly).

The role of names and name services
 Resources are accessed using identifier or reference

Page | 146

A key attribute of an entity that is usually relevant in a distributed system is its
address. For example:

– An identifier can be stored in variables and retrieved from tables quickly
– Identifier includes or can be transformed to an address for an object


 E.g. NFS file handle, Corba remote object reference
– A name is human-readable value (usually a string) that can be resolved to an
identifier or address

 Internet domain name, file pathname, process number

 E.g ./etc/passwd, http://www.cdk3.net/

 For many purposes, names are preferable to identifiers

– because the binding of the named resource to a physical location is deferred and
can be changed
– because they are more meaningful to users
 Resource names are resolved by name services
– to give identifiers and other useful attributes

Requirements for name spaces


 Allow simple but meaningful names to be used

 Potentially infinite number of names

 Structured
– to allow similar subnames without clashes
– to group related names

 Allow re-structuring of name trees
– for some types of change, old programs should continue to work
 Management of trust
Composed naming domains used to access a resource from a URL

http://www.cdk3.net/
http://www.cdk3.net/

Page | 147

• The DNS maps domain names to the attributes of a host computer: its IP address,
the type of entry (for example, a reference to a mail server or another host) and, for
example, the length of time the host’s entry will remain valid.
• The X500 directory service can be used to map a person’s name onto attributes
including their email address and telephone number.
• The CORBA Naming Service maps the name of a remote object onto its remote object
reference, whereas the Trading Service maps the name of a remote object onto its
remote object
reference, together with an arbitrary number of attributes describing the object in terms
understandable by human users.

Name Services and the Domain Name System
 A name service stores a collection of one or more naming contexts, sets of bindings
between textual names and attributes for objects such as computers, services, and

users.
 The major operation that a name service supports is to resolve names.
Uniform Resource Identifiers

Uniform Resource Identifiers (URIs) came about from the need to identify resources on

the Web,
and other Internet resources such as electronic mailboxes. An important goal was toidentify
resources in a coherent way, so that they could all be processed by common software

such as
browsers. URIs are ‘uniform’ in that their syntax incorporates that of indefinitely many
individual types of resource identifiers (that is, URI schemes), and there are procedures
for
managing the global namespace of schemes. The advantage of uniformity is that it easesthe
process of introducing new types of identifier, as well as using existing types of identifier
in new
contexts, without disrupting existing usage.
Uniform Resource Locators: Some URIs contain information that can be used to

locate and
access a resource; others are pure resource names. The familiar term Uniform ResourceLocator
(URL) is often used for URIs that provide location information and specify the method for
accessing the resource.
Uniform Resource Names: Uniform Resource Names (URNs) are URIs that are used as

pure
resource names rather than locators. For example, the URI:
mid:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com

Navigation
Navigation is the act of chaining multiple Naming Services in order to resolve a singlename to
the corresponding resource.
 Namespaces allows for structure in names.

URLs provide a default structure that decompose the location of a resource in

mailto:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com
mailto:0E4FC272-5C02-11D9-B115-000A95B55BC8@hpl.hp.com

Page | 148

Iterative navigation
Reason for NFS iterative name resolution
This is because the file service may encounter a symbolic link (i.e. an alias) when
resolving a name. A symbolic link must be interpreted in the client’s file system name
space because it may point to a file in a directory stored at another server. The client
computer must determine which server this is, because only the client knows its
mount points

Server controlled navigation

 In an alternative model, name server coordinates naming resolution and returns the
results to the client. It can be:
– Recursive:

 it is performed by the naming server

 the server becomes like a client for the next server

 this is necessary in case of client connectivity constraints
– Non recursive:
 it is performed by the client or the first server

 the server bounces back the next hop to its client
Non-recursive and recursive server-controlled navigation

DNS offers recursive navigation as an option, but iterative is the standard technique. Recursive
navigation must be used in domains that limit client access to their DNS information for security
reasons.

Page | 149

7

.

8

.
9.

The Domain Name System is a name service design whose main naming database is
used across the Internet.

This original scheme was soon seen to suffer from three major shortcomings:
• It did not scale to large numbers of computers.
• Local organizations wished to administer their own naming systems.
• A general name service was needed – not one that serves only for looking up computer
addresses.

Domain names • The DNS is designed for use in multiple implementations, each of

which may
have its own name space. In practice, however, only one is in widespread use, and that isthe one
used for naming across the Internet. The Internet DNS name space is partitioned both
organizationally and according to geography. The names are written with the highest-level
domain on the right. The original top-level organizational domains (also called generic
domains)
in use across the Internet were:
com – Commercial organizations
edu – Universities and other educational institutions
gov – US governmental agencies
mil – US military organizations

Lecture Notes: (To be attached)

Textbook :
1. George Coulouris, Jean Dollimore, Tim Kindberg, , "Distributed Systems: Concepts and

Design", 4th Edition, Pearson Education, 2005. PP. 350-356.
Application

Page | 150

Basic DNS algorithm for name resolution (domain name -> IP number)

• Look for the name in the local cache
• Try a superior DNS server, which responds with:
– another recommended DNS server

– the IP address (which may not be entirely up to date)

DNS name servers: Hierarchical organisation

Note: Name server names are in italics, and the corresponding domains are in parentheses.
Arrows denote name server entries

net – Major network support centres
org – Organizations not mentioned above
int – International organizations

New top-level domains such as biz and mobi have been added since the early 2000s. A full list of
current generic domain names is available from the Internet Assigned Numbers Authority
[www.iana.org I]. In addition, every country has its own domains:

us – United States
uk – United Kingdom
fr – France
... – ...
DNS - The Internet Domain Name System


 A distributed naming database (specified in RFC 1034/1305)

 Name structure reflects administrative structure of the Internet

 Rapidly resolves domain names to IP addresses
– exploits caching heavily
– typical query time ~100 milliseconds

 Scales to millions of computers
– partitioned database
– caching

 Resilient to failure of a server
– Replication

http://www.iana.org/

Page | 151

DNS in typical operation

DNS server functions and configuration


 Main function is to resolve domain names for computers, i.e. to get their IP addresses

– caches the results of previous searches until they pass their 'time to live'
 Other functions:
– get mail host for a domain
– reverse resolution - get domain name from IP address
– Host information - type of hardware and OS
– Well-known services - a list of well-known services offered by a host
– Other attributes can be included (optional)

DNS resource records

The DNS architecture allows for recursive navigation as well as iterative navigation. The
resolver specifies which type of navigation is required when contacting a name server. However,

Page | 152

name servers are not bound to implement recursive navigation. As was pointed out
above, recursive navigation may tie up server threads, meaning that other requests might
be delayed.

If the domain has any subdomains, there will be further records of type NS specifying
their name servers, which will also have individual A entries. For example, at one point
the database for qmul.ac.uk contained the following records for the name servers in its
subdomain
dcs.qmul.ac.uk:

The majority of the remainder of the records in a lower-level zone like dcs.qmul.ac.uk
will be of type A and map the domain name of a computer onto its IP address. They may
contain some aliases for the well-known services, for example:

The data for a zone starts with an SOA-type record, which contains the zone parameters
that specify, for example, the version number and how often secondaries should refresh
their copies. This is followed by a list of records of type NS specifying the name servers
for the domain and a list of records of type MX giving the domain names of mail hosts,
each prefixed by a number expressing its preference. For example, part of the database
for the domain dcs.qmul.ac.uk at one point is shown in the following figure where the
time to live 1D means 1 day.

Page | 153

–
–
–

–

DNS issues


 Name tables change infrequently, but when they do, caching can result in the delivery of
stale data.
– Clients are responsible for detecting this and recovering


 Its design makes changes to the structure of the name space difficult. For example:
– merging previously separate domain trees under a new root
– moving subtrees to a different part of the structure (e.g. if Scotland became a
separate country, its domains should all be moved to a new country-level
domain.)

 Directory service: 'yellow pages' for the resources in a network
Retrieves the set of names that satisfy a given description
– e.g. X.500, LDAP, MS Active Directory Services

 (DNS holds some descriptive data, but:
• the data is very incomplete
• DNS isn't organised to search it)

 Discovery service:- a directory service that also:
is automatically updated as the network configuration changes
meets the needs of clients in spontaneous networks (Section 2.2.3)

discovers services required by a client (who may be mobile) within the current
scope, for example, to find the most suitable printing service for image files after

arriving at a hotel.
Examples of- discovery services: Jini discovery service, the 'service location
–protocol', the 'simple service discovery protocol' (part of UPnP), the 'secure
discovery service'.

Page | 154

The name services store collections of <name, attribute> pairs, and how the attributes are
looked up from a name. It is natural to consider the dual of this arrangement, in which
attributes are used as values to be looked up. In these services, textual names can be
considered to be just another attribute. Sometimes users wish to find a particular person
or resource, but they do not know its name, only some of its other attributes.

For example, a user may ask: ‘What is the name of the user with telephone number

020-555
9980?’ Likewise, sometimes users require a service, but they are not concerned withwhat system
entity supplies that service, as long as the service is conveniently accessible.

For example, a user might ask, ‘Which computers in this building are Macintoshes

running the
Mac OS X operating system?’ or ‘Where can I print a high-resolution colour image?’
A service that stores collections of bindings between names and attributes and that looks

up
entries that match attribute-based specifications is called a directory service.
Examples are Microsoft’s Active Directory Services, X.500 and its cousin LDAP, Univers

and
Profile.
Directory services are sometimes called yellow pages services, and conventional name

services
are correspondingly called white pages services, in an analogy with the traditional types of
telephone directory. Directory services are also sometimes known as attribute-based

name
services.
A directory service returns the sets of attributes of any objects found to match some

specified
attributes. So, for example, the request ‘TelephoneNumber = 020 5559980’ might return{‘Name
= John Smith’, ‘TelephoneNumber = 020 555 9980’, ‘emailAddress =
john@dcs.gormenghast.ac.uk’, ...}.
The client may specify that only a subset of the attributes is of interest – for example,

just the
email addresses of matching objects. X.500 and some other directory services also allowobjects
to be looked up by conventional hierarchic textual names. The Universal Directory and
Discovery Service (UDDI), which was presented in Section 9.4, provides both whitepages and
yellow pages services to provide information about organizations and the web services

they
offer.
UDDI aside, the term discovery service normally denotes the special case of a directory

mailto:john@dcs.gormenghast.ac.uk

Page | 155

to the outside world, as do organizationally partitioned names. However, the relative
simplicity of use of textual names makes them unlikely to be replaced by attribute-
based naming in many applications.

Discovery service
• A database of services with lookup based on service
description or type, location and other criteria, E.g.
1. Find a printing service in this hotel
compatible with a Nikon camera
2. Send the video from my camera to the digital TV in my room.
• Automatic registration of new services
• Automatic connection of guest's clients to the discovery service
Global Name Service (GNS)


 Designed and implemented by Lampson and colleagues at the DEC Systems Research

Center (1986)
 Provide facilities for resource location, email addressing and authentication

 When the naming database grows from small to large scale, the structure of name space
may change
the service should accommodate it

 Cache consistency ?

The GNS manages a naming database that is composed of a tree of directories holding

names
and values. Directories are named by multi-part pathnames referred to a root, or relativeto a

working directory, much like file names in a UNIX file system. Each directory is also
assigned an integer, which serves as a unique directory identifier (DI). A directorycontains a

list of names and references. The values stored at the leaves of the directory tree are
organized into value trees, so that the attributes associated with names can be structured
values.

Names in the GNS have two parts: <directory name, value name>. The first part identifies

a
directory; the second refers to a value tree, or some portion of a value tree.
GNS Structure


 Tree of directories holding names and values

 Muti-part pathnames refer to the root or relative working directory (like Unix file system)

 Unique Directory Identifier (DI)

 A directory contains list of names and references

 Leaves of tree contain value trees (structured values)

Page | 156

Using DI to solve changes


 Using the name ‘#599/UK/AC/QMV, Peter.Smith’

GNS directory tree and value tree

Accommodating changes


 How to integrate naming trees of two previously separate GNS services

 But what is for ‘/UK/AC/QMV, Peter.Smith’ ?

Page | 157

Restructuring of database


 Using symbolic links

X500 Directory Service

X.500 is a directory service used in the same way as a conventional name service, but it is
primarily used to satisfy descriptive queries and is designed to discover the names and attributes
of other users or system resources. Users may have a variety of requirements for searching and
browsing in a directory of network users, organizations and system resources to obtain
information about the entities that the directory contains. The uses for such a service are likely to
be quite diverse. They range from enquiries that are directly analogous to the use of telephone
directories, such as a simple ‘white pages’ access to obtain a user’s electronic mail address or a
‘yellow pages’ query aimed, for example, at obtaining the names and telephone numbers of
garages specializing in the repair of a particular make of car, to the use of the directory to access
personal details such as job roles, dietary habits or even photographic images of the individuals.

 Standard of ITU and ISO organizations

 Organized in a tree structure with name nodes as in the case of other name servers

 A wide range of attributes are stored in each node

Page | 158




In the terminology of the X.500 standard, servers are Directory Service Agents (DSAs),
and their clients are termed Directory User Agents (DUAs). Each entry in the DIB consists
of a name and a set of attributes. As in other name servers, the full name of an entry
corresponds to a path through the DIT from the root of the tree to the entry. In addition
to full or absolute names, a DUA can establish a context, which includes a base node,
and then use shorter relative names that give the path from the base node to the named
entry.

An X.500 DIB Entry

Directory Information Tree (DIT)
Directory Information Base (DIB)

X.500 service architecture

The data stored in X.500 servers is organized in a tree structure with named nodes, as in the case
of the other name servers discussed in this chapter, but in X.500 a wide range of attributes are
stored at each node in the tree, and access is possible not just by name but also by searching for
entries with any required combination of attributes. The X.500 name tree is called the Directory
Information Tree (DIT), and the entire directory structure including the data associated with the
nodes, is called the Directory Information Base (DIB). There is intended to be a single integrated
DIB containing information provided by organizations throughout the world, with portions of the
DIB located in individual X.500 servers. Typically, a medium-sized or large organization would
provide at least one server. Clients access the directory by establishing a connection to a server
and issuing access requests. Clients can contact any server with an enquiry. If the data required
are not in the segment of the DIB held by the contacted server, it will either invoke other servers
to resolve the query or redirect the client to another server.

 Directory Server Agent (DSA)

 Directory User Agent (DUA)

Page | 159

Part of the X.500 Directory Information Tree

The data structure for the entries in the DIB and the DIT is very flexible. A DIB entry consists of
a set of attributes, where an attribute has a type and one or more values. The type of each
attribute is denoted by a type name (for example, countryName, organizationName,
commonName, telephoneNumber, mailbox, objectClass). New attribute types can be defined if
they are required. For each distinct type name there is a corresponding type definition, which
includes a type description and a syntax definition in the ASN.1 notation (a standard notation for
syntax definitions) defining representations for all permissible values of the type.

DIB entries are classified in a manner similar to the object class structures found in object-
oriented programming languages. Each entry includes an objectClass attribute, which determines
the class (or classes) of the object to which an entry refers. Organization, organizationalPerson
and document are all examples of objectClass values. Further classes can be defined as they are
required. The definition of a class determines which attributes are mandatory and which are
optional for entries of the given class. The definitions of classes are organized in an inheritance
hierarchy in which all classes except one (called topClass) must contain an objectClass attribute,
and the value of the objectClass attribute must be the names of one or more classes. If there are
several objectClass values, the object inherits the mandatory and optional attributes of each of
the classes.

Page | 160

 DISTRIBUTED SHARED MEMORY

Distributed shared memory (DSM) is an abstraction used for sharing data between
computers that do not share physical memory. Processes access DSM by reads and
updates to what appears to be ordinary memory within their address space. However,
an underlying runtime system ensures transparently that processes executing at
different computers observe the updates made by one another.
The main point of DSM is that it spares the programmer the concerns of message
passing when writing applications that might otherwise have to use it. DSM is primarily
a tool for parallel applications or for any distributed application or group of applications
in which individual shared data items can be accessed directly. DSM is in general less
appropriate in client-server systems, where clients normally view server-held
resources as abstract data and access them by request

Administration and updating of the DIB • The DSA interface includes operations for
adding, deleting and modifying entries. Access control is provided for both queries and
updating operations, so access to parts of the DIT may be restricted to certain users or
classes of user

Lightweight Directory Access Protocol • X.500’s assumption that organizations would

provide
information about themselves in public directories within a common system has provedlargely
unfounded. group at the University of Michigan proposed a more lightweight approach

called the
Lightweight Directory Access Protocol (LDAP), in which a DUA accesses X.500 directory
services directly over TCP/IP instead of the upper layers of the ISO protocol stack.

Page | 161

(for reasons of modularity and protection).

Message passing cannot be avoided altogether in a distributed system: in the absence of
physically shared memory, the DSM runtime support has to send updates in messages
between computers. DSM systems manage replicated data: each computer has a local
copy of recently accessed data items stored in DSM, for speed of access.

In distributed memory multiprocessors and clusters of off-the-shelf computing
components (see Section 6.3), the processors do not share memory but are connected
by a very high-speed network. These systems, like general-purpose distributed
systems, can scale to much greater numbers of processors than a shared-memory
multiprocessor’s 64 or so. A central question that has been pursued by the DSM and
multiprocessor research communities is whether the investment in knowledge of
shared memory algorithms and the associated software can be directly transferred to a
more scalable distributed memory architecture.

Message passing versus DSM
As a communication mechanism, DSM is comparable with message passing rather than
with request-reply-based communication, since its application to parallel processing,

in
particular, entails the use of asynchronous communication. The DSM and message
passing approaches to programming can be contrasted as follows:

Programming model:
Under the message passing model, variables have to be marshalled from one process,

transmitted
and unmarshalled into other variables at the receiving process. By contrast, with shared
memory

Page | 162

the processes involved share variables directly, so no marshalling is necessary – even of
pointers to shared variables – and thus no separate communication operations are
necessary.
Efficiency :
Experiments show that certain parallel programs developed for DSM can be made to
perform about as well as functionally equivalent programs written for message
passing platforms on the same hardware – at least in the case of relatively small
numbers of computers (ten or so). However, this result cannot be generalized. The
performance of a program based on DSM depends upon many factors, as we shall
discuss below – particularly the pattern of data sharing. Implementation approaches
to DSM
Distributed shared memory is implemented using one or a combination of specialized
hardware,

conventional paged virtual memory or middleware:
Hardware:
Shared-memory multiprocessor architectures based on a NUMA architecture rely on

specialized
hardware to provide the processors with a consistent view of shared memory. They
handle

memory LOAD and STORE instructions by communicating with remote memory and

cache
modules as necessary to store and retrieve data.

Paged virtual memory:
Many systems, including Ivy and Mether , implement DSM as a region of virtual memory
occupying the same address range in the address space of every participating process.
#include "world.h"

struct shared { int a, b; };
Program Writer:

main()
{

struct shared *p;
methersetup(); /* Initialize the Mether runtime */

p = (struct shared *)METHERBASE;

/* overlay structure on METHER segment */
p->a = p->b = 0; /* initialize fields to zero */
while(TRUE){ /* continuously update structure fields */

p –>a = p –>a + 1;
p –>b = p –>b - 1;
}

Page | 163

}

Program Reader:
main()
{

struct shared *p;
methersetup();
p = (struct shared *)METHERBASE;

while(TRUE){ /* read the fields once every second */
printf("a = %d, b = %d\n", p –>a, p –>b);

sleep(1);
}
}

Middleware:
Some languages such as Orca, support forms of DSM without any hardware or paging support,

in a platform-neutral way. In this type of implementation, sharing is implemented by
communication between instances of the user-level support layer in clients and servers.

Processes make calls to this layer when they access data items in DSM. The instances of this
layer at the different computers access local data items and communicate as necessary to
maintain consistency.

Design and implementation issues
The synchronization model used to access DSM consistently at the application level; the DSM
consistency model, which governs the consistency of data values accessed from different
computers; the update options for communicating written values between computers; the
granularity of sharing in a DSM implementation; and the problem of thrashing.

Structure
A DSM system is just such a replication system. Each application process is presented with some
abstraction of a collection of objects, but in this case the ‘collection’ looks more or less like

memory. That is, the objects can be addressed in some fashion or other. Different approaches to
DSM vary in what they consider to be an ‘object’ and in how objects are addressed. We consider
three approaches, which view DSM as being composed respectively of contiguous bytes,
language-level objects or immutable data items.

Byte-oriented
This type of DSM is accessed as ordinary virtual memory – a contiguous array of bytes. It is the

Page | 164

Object-oriented
The shared memory is structured as a collection of language-level objects with higher-
level semantics than simple read / write variables, such as stacks and dictionaries. The
contents of the shared memory are changed only by invocations upon these objects and
never by direct access to their member variables. An advantage of viewing memory in this
way is that object semantics can be utilized when enforcing consistency.

Immutable data
When reading or taking a tuple from tuple space, a process provides a tuple specification
and the

tuple space returns any tuple that matches that specification – this is a type of

associative
addressing. To enable processes to synchronize their activities, the read and take
operations both
block until there is a matching tuple in the tuple space.

Synchronization model
Many applications apply constraints concerning the values stored in shared memory.
This is as
true of applications based on DSM as it is of applications written for sharedmemory
multiprocessors (or indeed for any concurrent programs that share data, such as
operating system kernels and multi-threaded servers). For example, if a and b are two
variables stored in DSM, then a constraint might be that a=b always. If two or
moreprocesses execute the following code:
a:= a + 1;
b := b + 1;

then an inconsistency may arise. Suppose a and b are initially zero and that process

1gets as far
as setting a to 1. Before it can increment b, process 2 sets a to 2 and b to 1.

Consistency model
The local replica manager is implemented by a combination of middleware (the DSM
runtime
layer in each process) and the kernel. It is usual for middleware to perform the majority

of DSM
processing Even in a page based DSM implementation the kernel usually provides

view illustrated above by the Mether system. It is also the view of many other DSM
systems, including Ivy.It allows applications (and language implementations) to
impose whatever data structures they want on the shared memory. The shared
objects are directly addressible memory locations (in practice, the shared locations
may be multi-byte words rather than individual bytes). The only operations upon
those objects are read (or LOAD) and write (or STORE). If x and y are two memory
locations, then we denote instances of these operations as follows:

Page | 165

responsible for implementing the page-sharing policies. If DSM segments are persistent,
then one or more storage servers (for example, file servers) will also act as replica
managers.

Sequential consistency

A DSM system is said to be sequentially consistent if for any execution there is some
interleaving of the series of operations issued by all the processes that satisfies the following two
criteria:

SC1: The interleaved sequence of operations is such that if R(x) a occurs in the
sequence, then either the last write operation that occurs before it in the interleaved sequence is

W(x) a, or no write operation occurs before it and a is the initial value of x.
SC2: The order of operations in the interleaving is consistent with the program order in

which each individual client executed them.

Page | 166

Coherence

Coherence is an example of a weaker form of consistency. Under coherence, every process
agrees on the order of write operations to the same location, but they do not necessarily agree on
the ordering of write operations to different locations. We can think of coherence as sequential
consistency on a locationby- location basis. Coherent DSM can be implemented by taking a
protocol for implementing sequential consistency and applying it separately to each unit of
replicated data – for example, each page.

Weak consistency
This model exploits knowledge of synchronization operations in order to relax memory
consistency, while appearing to the programmer to implement sequential consistency (at least,
under certain conditions that are beyond the scope of this book). For example, if the programmer

uses a lock to implement a critical section, then a DSM system can assume that no other process
may access the data items accessed under mutual exclusion within it. It is therefore redundant for
the DSM system to propagate updates to these items until the process leaves the critical section.
While items are left with ‘inconsistent’ values some of the time, they are not accessed at those
points; the execution appears to be sequentially consistent.

Update options
Two main implementation choices have been devised for propagating updates made by one
process to the others: write-update and write-invalidate. These are applicable to a variety of
DSM consistency models, including sequential consistency. In outline, the options are as
follows:

Write-update: The updates made by a process are made locally and multicast to all other replica
managers possessing a copy of the data item, which immediately modify the data read by local
processes. Processes read the local copies of data items, without the need for communication. In
addition to allowing multiple readers, several processes may write the same data item at the same
time; this is known as multiple-reader/multiple-writer sharing.

Page | 167

Write-invalidate: This is commonly implemented in the form of multiple-reader/ single-writer
sharing. At any time, a data item may either be accessed in read-only mode by one or more
processes, or it may be read and written by a single process. An item that is currently accessed in
read-only mode can be copied indefinitely to other processes. When a process attempts to write

to it, a multicast message is first sent to all other copies to invalidate them and this is
acknowledged before the write can take place; the other processes are thereby prevented from
reading stale data (that is, data that are not up to date). Any processes attempting to access the
data item are blocked if a writer exists.

Granularity
An issue that is related to the structure of DSM is the granularity of sharing. Conceptually, all
processes share the entire contents of a DSM. As programs sharing DSM execute, however, only
certain parts of the data are actually shared and then only for certain times during the execution.
It would clearly be very wasteful for the DSM implementation always to transmit the entire

contents of DSM as processes access and update it.

Thrashing
A potential problem with write-invalidate protocols is thrashing. Thrashing is said to occur
where the DSM runtime spends an inordinate amount of time invalidating and transferring

shared data compared with the time spent by application processes doing useful work. It occurs

when several processes compete for the same data item, or for falsely shared data items.

RESOURCE MANAGEMENT

Resource Management is the efficient and effective development of an organization's resources
when they are needed. Such resources may include financial resources, inventory, human skills,

Page | 168

production resources, or information technology (IT).

In the realm of project management, processes, techniques and philosophies as to the best approach
for allocating resources have been developed. These include discussions on functional vs. cross-
functional resource allocation as well as processes espoused by organizations like the Project
Management Institute (PMI) through their Project Management Body of Knowledge (PMBOK)
methodology of project management. Resource management is a key element to activity resource
estimating and project human resource management. Both are essential components of a
comprehensive project management plan to execute and monitor a project successfully As is the
case with the larger discipline of project management, there are resource management softwaretools
available that automate and assist the process of resource allocation to projects and portfolio
resource transparency including supply and demand of resources. The goal of these tools typically is
to ensure that: (i) there are employees within our organization with required specific skill set and
desired profile required for a project, (ii) decide the number and skill sets of new employees to hire,

and (iii) allocate the workforce to various projects.[3]

Corporate Resource Management Process

Large organizations usually have a defined corporate resource management process which mainly
guarantees that resources are never over-allocated across multiple projects Peter Drucker wrote of
the need to focus resources, abandoning a less promising initiatives for every new project taken on,
as fragmentation inhibits results

Techniques

One resource management technique is resource leveling. It aims at smoothing the stock of
resources on hand, reducing both excess inventories and shortages.

The required data are: the demands for various resources, forecast by time period into the future as
far as is reasonable, as well as the resources' configurations required in those demands, and
the supply of the resources, again forecast by time period into the future as far as is reasonable.

The goal is to achieve 100% utilization but that is very unlikely, when weighted by important
metrics and subject to constraints, for example: meeting a minimum service level, but otherwise
minimizing cost. A Project Resource Allocation Matrix (PRAM) is maintained to visualize the
resource allocations against various projects.

The principle is to invest in resources as stored capabilities, then unleash the capabilities as
demanded.
A dimension of resource development is included in resource management by which investment in
resources can be retained by a smaller additional investment to develop a new capability that is
demanded, at a lower investment than disposing of the current resource and replacing it with another
that has the demanded capability.
In conservation, resource management is a set of practices pertaining to maintaining natural systems

https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Resource_allocation
https://en.wikipedia.org/wiki/Project_Management_Institute
https://en.wikipedia.org/wiki/Project_Management_Institute
https://en.wikipedia.org/wiki/Project_Management_Institute
https://en.wikipedia.org/wiki/Project_Management_Body_of_Knowledge
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/List_of_resource_management_software
https://en.wikipedia.org/wiki/Supply_and_demand
https://en.wikipedia.org/wiki/Resource_management#cite_note-3
https://en.wikipedia.org/wiki/Resource_management#cite_note-3
https://en.wikipedia.org/wiki/Resource_leveling
https://en.wikipedia.org/wiki/Demand_(economics)
https://en.wikipedia.org/wiki/Supply_(economics)
https://en.wikipedia.org/wiki/Utilization
https://en.wikipedia.org/wiki/Cost
https://en.wikipedia.org/wiki/Habitat_conservation

Page | 169

integrity. Examples of this form of management are air resource management, soil
conservation, forestry, wildlife management and water resourcemanagement. The broad
term for this type of resource management is natural resource management (NRM).
Load balancing (computing)
load balancing distributes workloads across multiple computing resources, such as
computers,
a computer cluster, network links, central processing units or disk drives. Load balancing
aims to
optimize resource use, maximizethroughput, minimize response time, and avoid overload of
any
single resource. Using multiple components with load balancing instead of a single
component may increase reliability and availability through redundancy. Load balancing
usually involves dedicated software or hardware, such as a multilayer switch or a Domain
Name System server process.
Load balancing differs from channel bonding in that load balancing divides traffic between

network
interfaces on a network socket (OSI model layer 4) basis, while channel bonding implies adivision
of traffic between physical interfaces at a lower level, either per packet (OSI model Layer 3)

or on a
data link (OSI model Layer 2) basis with a protocol like shortest path bridging.
One of the most commonly used applications of load balancing is to provide a single Internet

service
from multiple servers, sometimes known as a server farm. Commonly load-balancedsystems
include popular web sites, large Internet Relay Chatnetworks, high-bandwidth File Transfer
Protocol sites, Network News Transfer Protocol (NNTP) servers, Domain Name System (DNS)
servers, and databases.
Round-robin DNS
An alternate method of load balancing, which does not necessarily require a dedicated
software or
hardware node, is calledround robin DNS. In this technique, multiple IP addresses are
associated
with a single domain name; clients are expected to choose which server to connect to. Unlike
the use
of a dedicated load balancer, this technique exposes to clients the existence of multiple
backend
servers. The technique has other advantages and disadvantages, depending on the degree of
control
over the DNS server and the granularity of load balancing desired.
Another more effective technique for load-balancing using DNS is to delegate

www.example.org as
a sub-domain whose zone is served by each of the same servers that are serving the website. This
technique works particularly well where individual servers are spread geographically on the

Internet.
For example,

one.example.org A 192.0.2.1
two.example.org A 203.0.113.2
www.example.org NS one.example.org
www.example.org NS two.example.org

https://en.wikipedia.org/wiki/Air#Air_pollution
https://en.wikipedia.org/wiki/Soil_conservation
https://en.wikipedia.org/wiki/Soil_conservation
https://en.wikipedia.org/wiki/Soil_conservation
https://en.wikipedia.org/wiki/Wildlife
https://en.wikipedia.org/wiki/Water_resource
https://en.wikipedia.org/wiki/Soil_conservation
https://en.wikipedia.org/wiki/Wildlife
https://en.wikipedia.org/wiki/Natural_resource_management
https://en.wikipedia.org/wiki/Water_resource
https://en.wikipedia.org/wiki/Workload
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Disk_drives
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Disk_drives
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Multilayer_switch#Layer_4_Load_Balancer
https://en.wikipedia.org/wiki/Redundancy_(engineering)
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Channel_bonding
https://en.wikipedia.org/wiki/Network_socket
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Shortest_path_bridging
https://en.wikipedia.org/wiki/Shortest_path_bridging
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Server_farm
https://en.wikipedia.org/wiki/Web_site
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Network_News_Transfer_Protocol
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Round_robin_DNS
https://en.wikipedia.org/wiki/Round_robin_DNS
https://en.wikipedia.org/wiki/Round_robin_DNS
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Domain_name
http://www.example.org/
http://www.example.org/
http://www.example.org/

Page | 170

@ in a 192.0.2.1

On server two the same zone file contains:

@ in a 203.0.113.2

This way, when a server is down, its DNS will not respond and the web service does not receive any
traffic. If the line to one server is congested, the unreliability of DNS ensures less HTTP traffic
reaches that server. Furthermore, the quickest DNS response to the resolver is nearly always the one
from the network's closest server, ensuring geo-sensitive load-balancing. A short TTL on the A-
record helps to ensure traffic is quickly diverted when a server goes down. Consideration must be
given the possibility that this technique may cause individual clients to switch between individual
servers in mid-session.
Client-Side Random Load Balancing]
One more approach to load balancing is to deliver list of server IPs to the client, and then to have
client randomly select the IP from the list on each connection. This essentially relies on all clients
causing similar load, and the Law of Large Numbersto achieve reasonably flat load distribution
across servers. It has been claimed that client-side random load balancing tends to provide better
load distribution then round-robin DNS; this has been attributed to caching issues with round-robin
DNS, which in case of large DNS caching servers, tend to skew the distribution for round-robin
DNS, while client-side random selection remains unaffected regardless of DNS caching.
With this approach, the method of delivery of list of IPs to the client can vary, and may be
implemented as a DNS list (delivered to all the clients without any round-robin), or via hardcoding it
to the list. If "smart client" is used, detecting that randomly selected server is down, and connecting
randomly again, it also provides fault tolerance.
Server-side Load Balancers
For Internet services, server-side load balancer is usually a software program that is listening on
the port where external clients connect to access services. The load balancer forwards requests to
one of the "backend" servers, which usually replies to the load balancer. This allows the load
balancer to reply to the client without the client ever knowing about the internal separation of
functions. It also prevents clients from contacting back-end servers directly, which may have
security benefits by hiding the structure of the internal network and preventing attacks on the
kernel's network stack or unrelated services running on other ports.
Some load balancers provide a mechanism for doing something special in the event that all backend
servers are unavailable. This might include forwarding to a backup load balancer, or displaying a
message regarding the outage.
It is also important that the load balancer itself does not become a single point of failure. Usually
load balancers are implemented in high-availability pairs which may also replicate session
persistence data if required by the specific application.
Scheduling algorithms
Numerous scheduling algorithms are used by load balancers to determine which back-end server to
send a request to. Simple algorithms include random choice or round robin. More sophisticated load
balancers may take additional factors into account, such as a server's reported load, least response

https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/Law_of_Large_Numbers
https://en.wikipedia.org/wiki/TCP_and_UDP_port
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/High_availability
https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Scheduling_algorithm
https://en.wikipedia.org/wiki/Round-robin_scheduling

Page | 171

times, up/down status (determined by a monitoring poll of some kind), number of active
connections, geographic location, capabilities, or how much traffic it has recently been assigned.
Persistence
An important issue when operating a load-balanced service is how to handle information that must
be kept across the multiple requests in a user's session. If this information is stored locally on one
backend server, then subsequent requests going to different backend servers would not be able to
find it. This might be cached information that can be recomputed, in which case load-balancing a
request to a different backend server just introduces a performance issue.
Ideally the cluster of servers behind the load balancer should be session-aware, so that if a client
connects to any backend server at any time the user experience is unaffected. This is usually
achieved with a shared database or an in-memory session database, for example Memcached.
One basic solution to the session data issue is to send all requests in a user session consistently to the
same backend server. This is known as persistence or stickiness. A significant downside to this
technique is its lack of automatic failover: if a backend server goes down, its per-session information
becomes inaccessible, and any sessions depending on it are lost. The same problem is usually
relevant to central database servers; even if web servers are "stateless" and not "sticky", the central
database is (see below).
Assignment to a particular server might be based on a username, client IP address, or be random.
Because of changes of the client's perceived address resulting from DHCP, network address
translation, and web proxies this method may be unreliable. Random assignments must be
remembered by the load balancer, which creates a burden on storage. If the load balancer is replaced
or fails, this information may be lost, and assignments may need to be deleted after a timeout period
or during periods of high load to avoid exceeding the space available for the assignment table. The
random assignment method also requires that clients maintain some state, which can be a problem,
for example when a web browser has disabled storage of cookies. Sophisticated load balancers use
multiple persistence techniques to avoid some of the shortcomings of any one method.
Another solution is to keep the per-session data in a database. Generally this is bad for performance
because it increases the load on the database: the database is best used to store information less
transient than per-session data. To prevent a database from becoming a single point of failure, and to
improve scalability, the database is often replicated across multiple machines, and load balancing is
used to spread the query load across those replicas. Microsoft's ASP.net State Server technology is
an example of a session database. All servers in a web farm store their session data on State Server
and any server in the farm can retrieve the data.
In the very common case where the client is a web browser, a simple but efficient approach is to
store the per-session data in the browser itself. One way to achieve this is to use a browser cookie,
suitably time-stamped and encrypted. Another isURL rewriting. Storing session data on the client is
generally the preferred solution: then the load balancer is free to pick any backend server to handle a
request. However, this method of state-data handling is poorly suited to some complex business
logic scenarios, where session state payload is big and recomputing it with every request on a server
is not feasible. URL rewriting has major security issues, because the end-user can easily alter the
submitted URL and thus change session streams.
Yet another solution to storing persistent data is to associate a name with each block of data, and use
a distributed hash table to pseudo-randomly assign that name to one of the available servers, and
then store that block of data in the assigned server.

https://en.wikipedia.org/wiki/Memcached
https://en.wikipedia.org/wiki/Failover
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/DHCP
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Web_proxy
https://en.wikipedia.org/wiki/DHCP
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Network_address_translation
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/ASP.net
https://en.wikipedia.org/wiki/HTTP_cookie
https://en.wikipedia.org/wiki/HTTP_cookie
https://en.wikipedia.org/wiki/URL_rewriting
https://en.wikipedia.org/wiki/Distributed_hash_table

Page | 172

Load balancer features
Hardware and software load balancers may have a variety of special features. The fundamental
feature of a load balancer is to be able to distribute incoming requests over a number of backend
servers in the cluster according to a scheduling algorithm. Most of the following features are vendor
specific:
 Asymmetric load: A ratio can be manually assigned to cause some backend servers to get a
greater share of the workload than others. This is sometimes used as a crude way to account for
some servers having more capacity than others and may not always work as desired.
 Priority activation: When the number of available servers drops below a certain number, or load
gets too high, standby servers can be brought online.
 SSL Offload and Acceleration: Depending on the workload, processing the encryption and
authentication requirements of an SSL request can become a major part of the demand on the
Web Server's CPU; as the demand increases, users will see slower response times, as the SSL
overhead is distributed among Web servers. To remove this demand on Web servers, a balancer
can terminate SSL connections, passing HTTPS requests as HTTP requests to the Web servers.
If the balancer itself is not overloaded, this does not noticeably degrade the performance
perceived by end users. The downside of this approach is that all of the SSL processing is
concentrated on a single device (the balancer) which can become a new bottleneck. Some load
balancer appliances include specialized hardware to process SSL. Instead of upgrading the load
balancer, which is quite expensive dedicated hardware, it may be cheaper to forgo SSL offload
and add a few Web servers. Also, some server vendors such as Oracle/Sun now incorporate
cryptographic acceleration hardware into their CPUs such as the T2000. F5 Networks
incorporates a dedicated SSL acceleration hardware card in their local traffic manager (LTM)
which is used for encrypting and decrypting SSL traffic. One clear benefit to SSL offloading in
the balancer is that it enables it to do balancing or content switching based on data in the HTTPS
request.
 Distributed Denial of Service (DDoS) attack protection: load balancers can provide features
such as SYN cookies and delayed-binding (the back-end servers don't see the client until it
finishes its TCP handshake) to mitigate SYN floodattacks and generally offload work from the
servers to a more efficient platform.
 HTTP compression: reduces amount of data to be transferred for HTTP objects by utilizing gzip
compression available in all modern web browsers. The larger the response and the further away
the client is, the more this feature can improve response times. The tradeoff is that this feature
puts additional CPU demand on the Load Balancer and could be done by Web servers instead.
 TCP offload: different vendors use different terms for this, but the idea is that normally each
HTTP request from each client is a different TCP connection. This feature utilizes HTTP/1.1 to
consolidate multiple HTTP requests from multiple clients into a single TCP socket to the back-
end servers.
 TCP buffering: the load balancer can buffer responses from the server and spoon-feed the data
out to slow clients, allowing the web server to free a thread for other tasks faster than it would if
it had to send the entire request to the client directly.
 Direct Server Return: an option for asymmetrical load distribution, where request and reply
have different network paths.
 Health checking: the balancer polls servers for application layer health and removes failed
servers from the pool.
 HTTP caching: the balancer stores static content so that some requests can be handled without
contacting the servers.
 Content filtering: some balancers can arbitrarily modify traffic on the way through.

https://en.wikipedia.org/wiki/SSL_Acceleration
https://en.wikipedia.org/wiki/Secure_Sockets_Layer
https://en.wikipedia.org/wiki/Secure_Sockets_Layer
https://en.wikipedia.org/wiki/Distributed_denial_of_service
https://en.wikipedia.org/wiki/SYN_cookies
https://en.wikipedia.org/wiki/SYN_flood
https://en.wikipedia.org/wiki/HTTP_compression
https://en.wikipedia.org/wiki/HTTP_caching

Page | 173















Sharing annotations
Munin implements a variety of consistency protocols, which are applied at the
granularity of individual data items. The protocols are parameterized according to the
following options:
• whether to use a write-update or write-invalidate protocol;
• whether several replicas of a modifiable data item may exist simultaneously;

• whether or not to delay updates or invalidations (for example, under release
consistency);

• whether the item has a fixed owner, to which all updates must be sent;
• whether the same data item may be modified concurrently by several writers;
• whether the data item is shared by a fixed set of processes;
• whether the data item may be modified. Read-only: No updates may be made after initialization and the item may be freely
copied. Migratory: Processes typically take turns in making several accesses to the item,
at least one of which is an update. For example, the item might be accessed within a
critical section. Munin always gives both read and write access together to such an
object, even when a process takes a read fault. This saves subsequent write-fault
processing.
Write-shared: Several processes update the same data item (for example, an array)
concurrently, but this annotation is a declaration from the programmer that the
processes do not update the same parts of it. This means that Munin can avoid false
sharing but must propagate only those words in the data item that are actually updated
at each process. To do this, Munin makes a copy of a page (inside a write-fault handler)
just before it is updated locally. Only the differences

HTTP security: some balancers can hide HTTP error pages, remove server identification
headers from HTTP responses, and encrypt cookies so that end users cannot
manipulate them.
Priority queuing: also known as rate shaping, the ability to give different priority to
different
traffic.
Content-aware switching: most load balancers can send requests to different servers
based on
the URL being requested, assuming the request is not encrypted (HTTP) or if it isencrypted (via
HTTPS) that the HTTPS request is terminated (decrypted) at the load balancer.
Client authentication: authenticate users against a variety of authentication sources
before
allowing them access to a website.
Programmatic traffic manipulation: at least one balancer allows the use of a scripting
language to allow custom balancing methods, arbitrary traffic manipulations, and more.
Firewall: direct connections to backend servers are prevented, for network security
reasons
Firewall is a set of rules that decide whether the traffic may pass through an interface or
not.
Intrusion prevention system: offer application layer security in addition to
network/transport
layer offered by firewall security.

https://en.wikipedia.org/wiki/Priority_queuing
https://en.wikipedia.org/wiki/Rate_shaping
https://en.wikipedia.org/wiki/Priority_queuing
https://en.wikipedia.org/wiki/Priority_queuing
https://en.wikipedia.org/wiki/Firewall_(networking)
https://en.wikipedia.org/wiki/Intrusion_prevention_system

Page | 174

between the two versions are sent in an update.

Producer-consumer: The data object is shared by a fixed set of processes, only one of which
updates it. As we explained when discussing thrashing above, a writeupdate protocol is most

suitable here. Moreover, updates may be delayed under the model of release consistency,
assuming that the processes use locks to synchronize their accesses.

Reduction: The data item is always modified by being locked, read, updated and unlocked. An
example of this is a global minimum in a parallel computation, which must be fetched and

modified atomically if it is greater than the local minimum. These items are stored at a fixed
owner. Updates are sent to the owner, which propagates them.

Result: Several processes update different words within the data item; a single process reads the
whole item. For example, different ‘worker’ processes might fill in different elements of an

array, which is then processed by a ‘master’ process. The point here is that the updates need only
be propagated to the master and not to the workers (as would occur under the ‘write-shared’
annotation just described).

Conventional: The data item is managed under an invalidation protocol similar to that described

in the previous section. No process may therefore read a stale version of the data item.

OTHER CONSISTENCY MODELS
Models of memory consistency can be divided into uniform models, which do not distinguish
between types of memory access, and hybrid models, which do distinguish between ordinary and
synchronization accesses (as well as other types of access).

Other uniform consistency models include:
Causal consistency: Reads and writes may be related by the happened-before relationship . This

is defined to hold between memory operations when either (a) they are made by the same
process; (b) a process reads a value written by another process; or (c) there exists a sequence of
such operations linking the two operations. The model’s constraint is that the value returned by a
read must be consistent with the happened-before relationship.

Processor consistency: The memory is both coherent and adheres to the pipelined RAM model
(see below). The simplest way to think of processor consistency is that the memory is coherent

and that all processes agree on the ordering of any two write accesses made by the same process

– that is, they agree with its program order.

Page | 175

Common Object Request Broker Architecture (CORBA)

CORBA is a middeware design that allows application programs to communicate with

one another irrespective of their programming languages, their hardware and software

platforms, the networks they communicate over and their implementors.

Applications are built from CORBA objects, which implement interfaces defined in
CORBA’s interface definition language, IDL. Clients access the methods in the IDL
interfaces of
CORBA objects by means of RMI. The middleware component that supports RMI is

called the
Object Request Broker or ORB.

Introduction
The OMG (Object Management Group) was formed in 1989 with a view to encouraging
the
adoption of distributed object systems in order to gain the benefits of object-oriented

Pipelined RAM: All processors agree on the order of writes issued by any given processor

In addition to release consistency, hybrid models include:

Entry consistency: Entry consistency was proposed for the Midway DSM system. In this

model,
every shared variable is bound to a synchronization object such as a lock, which governs
access
to that variable. Any process that first acquires the lock is guaranteed to read the latest

value of
the variable. A process wishing to write the variable must first obtain the corresponding
lock in
‘exclusive’ mode – making it the only process able to access the variable.

Several processes may read the variable concurrently by holding the lock in

nonexclusive mode. Midway avoids the tendency to false sharing in release consistency,

but at the expense of increased programming complexity.

Scope consistency: This memory model [Iftode et al. 1996] attempts to simplify the
programming model of entry consistency. In scope consistency, variables are associated
with
synchronization objects largely automatically instead of relying on the programmer to

associate
locks with variables explicitly. For example, the system can monitor which variables are
updated
in a critical section.

Weak consistency: Weak consistency [Dubois et al. 1988] does not distinguish between

acquire and release synchronization accesses. One of its guarantees is that all previous

ordinary accesses complete before either type of synchronization access completes.

Page | 176

programming for software development and to make use of distributed systems, which
were becoming widespread. To achieve its aims, the OMG advocated the use of open
systems based on standard object-oriented interfaces. These systems would be built
from heterogeneous hardware, computer networks, operating systems and programming
languages.
An important motivation was to allow distributed objects to be implemented in any
programming language and to be able to communicate with one another. They therefore
designed an interface language that was independent of any specific implementation
language.
They introduced a metaphor, the object request broker(or ORB), whose role is to help a
client to invoke a method on an object. This role involves locating the object, activating
the object if necessary and then communicating the client’s request to the object, which
carries it out and replies.

In 1991, a specification for an object request broker architecture known as CORBA

(Common
Object Request Broker Architecture) was agreed by a group of companies. This was
followed in
1996 by the CORBA 2.0 specification, which defined standards enabling

implementations made
by different developers to communicate with one another. These standards are called
the General
Inter-ORB protocol or GIOP. It is intended that GIOP can be implemented over any

transport
layer with connections. The implementation of GIOP for the Internet uses the TCP
protocol and
is called the Internet Inter-ORB Protocol or IIOP [OMG 2004a]. CORBA 3 first appeared

in late
1999 and a component model has been added recently.

The main components of CORBA’s language-independent RMI framework are the

following:
• An interface definition language known as IDL,
• The GIOP defines an external data representation, called CDR. It also defines specific

formats for the messages in a request-reply protocol. In addition to request and reply

messages, it specifies messages for enquiring about the location of an object, for
cancelling requests and for reporting errors.

• The IIOP, an implementation of GIOP defines a standard form for remote object
references,

CORBA RMI

Page | 177

• the object model offered by CORBA;

• the interface definition language and its mapping onto the implementation language.

CORBA's object model
The CORBA object model is similar to the one described in , but clients are not necessarily
objects – a client can be any program that sends request messages to remote objects and receives
replies. The term CORBA object is used to refer to remote objects. Thus, a CORBA object
implements an IDL interface, has a remote object reference and is able to respond to invocations
of methods in its IDL interface. A CORBA object can be implemented by a language that is not
objectoriented, for example without the concept of class. Since implementation languages will
have different notions of class or even none at all, the class concept does not exist in CORBA.
Therefore classes cannot be defined in CORBA IDL, which means that instances of classes
cannot be passed as arguments.

CORBA IDL
These are preceded by definitions of two structs, which are used as parameter types in defining
the methods. Note in particular that GraphicalObject is defined as a struct , whereas it was a
class in the Java RMI example. A component whose type is a struct has a set of fields containing
values of various types like the instance variables of an object, but it has no methods.

Parameters and results in CORBA IDL:
Each parameter is marked as being for input or output or both, using the keywords in , out or
inout illustrates a simple example of the use of those keywords

Page | 178

The semantics of parameter passing are as follows:
Passing CORBA objects:
Any parameter whose type is specified by the name of an IDL interface, such as the
return value Shape in line 7, is a reference to a CORBA object and the value of a remote
object reference is passed.
Passing CORBA primitive and constructed types:
Arguments of primitive and constructed types are copied and passed by value. On
arrival, a new value is created in the recipient’s process. For example, the struct
GraphicalObject passed as argument (in line 7) produces a new copy of this struct at the
server.

Type Object :
Object is the name of a type whose values are remote object references. It is effectively a
common supertype of all of IDL interface types such as Shape and ShapeList.

Page | 179

Exceptions in CORBA IDL:
CORBA IDL allows exceptions to be defined in interfaces and thrown by their methods. To
illustrate this point, we have defined our list of shapes in the server as a sequence of a
fixed length (line 4) and have defined FullException (line 6), which is thrown by the
method newShape (line 7) if the client attempts to add a shape when the sequence is full.

Invocation semantics:
Remote invocation in CORBA has at-most-once call semantics as the default. However,
IDL
may specify that the invocation of a particular method has maybe semantics by using the

oneway
keyword. The client does not block on oneway requests, which can be used only for
methods
without results.

The CORBA Naming service
It is a binder that provides operations including rebind for servers to register the
remote object references of CORBA objects by name and resolve for clients to look
them up by name. The names are structured in a hierarchic fashion, and each name in
a path is inside a structure called a NameComponent . This makes access in a simple
example seem rather complex.

CORBA pseudo objects
Implementations of CORBA provide interfaces to the functionality of the ORB that
programmers
need to use. In particular, they include interfaces to two of the components in the ORB

core and
the Object Adaptor

CORBA client and server example
This is followed by a discussion of callbacks in CORBA. We use Java as the client and
server
languages, but the approach is similar for other languages. The interface compiler idlj can

be
applied to the CORBA interfaces to generate the following items:

Page | 180

.

 The equivalent Java interfaces – two per IDL interface. The name of the first Java
interface ends in Operations – this interface just defines the operations in the IDL
interface. The Java second interface has the same name as the IDL interface and

implements the operations in the first interface as well as those in an interface suitable for
a CORBA object.

 The server skeletons for each idl interface. The names of skeleton classes end in POA ,
for example ShapeListPOA.

 The proxy classes or client stubs, one for each IDL interface. The names of these classes
end in Stub , for example _ShapeListStub\
 A Java class to correspond to each of the structs defined with the IDL interfaces. In our

example, classes Rectangle and GraphicalObject are generated. Each of these classes
contains a declaration of one instance variable for each field in the corresponding struct
and a pair of constructors, but no other methods.
 Classes called helpers and holders, one for each of the types defined in the IDL interface.

A helper class contains the narrow method, which is used to cast down from a given
object reference to the class to which it belongs, which is lower down the class hierarchy.
For example, the narrow method in ShapeHelper casts down to class Shape . The holder
classes deal with out and inout arguments, which cannot be mapped directly onto Java.

Server program
The server program should contain implementations of one or more IDL interfaces. For a server
written in an object-oriented language such as Java or C++, these implementations are
implemented as servant classes. CORBA objects are instances of servant classes.

Page | 181

When a server creates an instance of a servant class, it must register it with the POA,
which makes the instance into a CORBA object and gives it a remote object
reference. Unless this is done, the CORBA object will not be able to receive remote
invocations. Readers who studied Chapter 5 carefully may realize that registering the
object with the POA causes it to be recorded in the CORBA equivalent of the remote
object table.

Page | 182

The client program
It creates and initializes an ORB (line 1), then contacts the Naming Service to get a
reference to the remote ShapeList object by using its resolve method (line 2). After that it
invokes its method allShapes (line 3) to obtain a sequence of remote object references
to all the Shapes currently
held at the server. It then invokes the getAllState method (line 4), giving as argument

the first
remote object reference in the sequence returned; the result is supplied as an instance of
the
GraphicalObject class.

Page | 183

Callbacks
Callbacks can be implemented in CORBA in a manner similar to the one described for
Java RMI For example, the WhiteboardCallback interface may be defined as follows:

interface WhiteboardCallback {
oneway void callback(in int version);
};
This interface is implemented as a CORBA object by the client, enabling the server to
send the
client a version number whenever new objects are added. But before the server can do

this, the
client needs to inform the server of the remote object reference of its object. To make
this

possible, the ShapeList interface requires additional methods such as register and

deregister, as
follows:

int register(in WhiteboardCallback callback);
void deregister(in int callbackId);

After a client has obtained a reference to the ShapeList object and created an instance of
WhiteboardCallback, it uses the register method of ShapeList to inform the server that it is

interested in receiving callbacks. The ShapeList object in the server is responsible for

keeping a
list of interested clients and notifying all of them each time its version number increases
when a

new object is added.

Page | 184

CORBA provides for both static and dynamic invocations. Static invocations are used
when the remote interface of the CORBA object is known at compile time, enabling
client stubs and server skeletons to be used. If the remote interface is not known at
compile time, dynamic invocation must be used. Most programmers prefer to use static
invocation because it provides a more natural programming model.
ORB core ◊ The role of the ORB core is similar to that of the communication module . In
addition, an ORB core provides an interface that includes the following:
• operations enabling it to be started and stopped;
• operations to convert between remote object references and strings;
• operations to provide argument lists for requests using dynamic invocation.

Object adapter
The role of an object adapter is to bridge the gap between CORBA objects with IDL
interfaces
and the programming language interfaces of the corresponding servant classes. This

role also
includes that of the remote reference and dispatcher modules. An object adapter has the
following tasks:

The architecture of CORBA
The architecture is designed to support the role of an object request broker that enables
clients to invoke methods in remote objects, where both clients and servers can be
implemented in a variety of programming languages. The main components of the
CORBA architecture are illustrated in Figure

Page | 185

• it creates remote object references for CORBA objects;
• it dispatches each RMI via a skeleton to the appropriate servant;
• it activates and deactivates servants.

An object adapter gives each CORBA object a unique object name, which forms part of its
remote object reference. The same name is used each time an object is activated. The object

name may be specified by the application program or generated by the object adapter. Each
CORBA object is registered with its object adapter, which may keep a remote object table that
maps the names of CORBA objects to their servants.

Portable object adapter
The CORBA 2.2 standard for object adapters is called the Portable Object Adapter. It is called
portable because it allows applications and servants to be run on ORBs produced by different
developers [Vinoski 1998]. This is achieved by means of the standardization of the skeleton
classes and of the interactions between the POA and the servants. The POA supports CORBA
objects with two different sorts of lifetimes:

• those whose lifetimes are restricted to that of the process their servants are instantiated in;
• those whose lifetimes can span the instantiations of servants in multiple processes.

Skeletons
Skeleton classes are generated in the language of the server by an IDL compiler. As before,
remote method invocations are dispatched via the appropriate skeleton to a particular servant,
and the skeleton unmarshals the arguments in request messages and marshals exceptions and

results in reply messages.

Client stubs/proxies
These are in the client language. The class of a proxy (for object oriented languages) or a set of
stub procedures (for procedural languages) is generated from an IDL interface by an IDL
compiler for the client language. As before, the client stubs/proxies marshal the arguments in
invocation requests and unmarshal exceptions and results in replies.

Implementation repository
• An implementation repository is responsible for activating registered servers on demand
and for locating servers that are currently running. The object adapter name is used to
refer to servers when registering and activating them.
• An implementation repository stores a mapping from the names of object adapters to the
pathnames of files containing object implementations.

Page | 186

• Object implementations and object adapter names are generally registered with the

implementation repository when server programs are installed.

• When object implementations are activated in servers, the hostname and port number of
the server are added to the mapping.

Interface repository
The role of the interface repository is to provide information about registered IDL interfaces to
clients and servers that require it. For an interface of a given type it can supply the names of the
methods and for each method, the names and types of the arguments and exceptions. Thus, the

interface repository adds a facility for reflection to CORBA

Dynamic invocation interface
The dynamic invocation interface allows clients to make dynamic invocations on remote
CORBA objects. It is used when it is not practical to employ proxies. The client can obtain from
the interface repository the necessary information about the methods available for a given
CORBA object. The client may use this information to construct an invocation with suitable
arguments and send it to the server.

Dynamic skeletons
If a server uses dynamic skeletons, then it can accept invocations on the interface of a CORBA
object for which it has no skeleton. When a dynamic skeleton receives an invocation, it inspects
the contents of the request to discover its target object, the method to be invoked and the

arguments. It then invokes the target.

Legacy code
The term legacy code refers to existing code that was not designed with distributed objects in

mind. A piece of legacy code may be made into a CORBA object by defining an IDL interface
for it and providing an implementation of an appropriate object adapter and the necessary
skeletons.

CORBA Interface Definition Language
The CORBA Interface Definition Language, IDL, provides facilities for defining modules,
interfaces, types, attributes and method signatures. IDL has the same lexical rules as C++ but has
additional keywords to support distribution, for example interface, any, attribute, in, out, inout,
readonly, raises. It also allows standard C++ preprocessing facilities.

Page | 187

IDL Modules
The module construct allows interfaces and other IDL type definitions to be grouped in
logical units. A module defines a naming scope, which prevents names defined within a
module clashing with names defined outside it.

IDL interface
An IDL interface describes the methods that are available in CORBA objects that
implement that interface. Clients of a CORBA object may be developed just from the
knowledge of its IDL interface.

IDL methods
The general form of a method signature is:
[oneway] <return_type> <method_name> (parameter1,..., parameterL)
[raises (except1,..., exceptN)] [context (name1,..., nameM)]

where the expressions in square brackets are optional. For an example of a method

signature that
contains only the required parts, consider:

void getPerson(in string name, out Person p);

IDL types
IDL supports fifteen primitive types, which include short (16-bit), long (32- bit),

unsigned short,
unsigned long, float (32-bit), double (64-bit), char, Boolean (TRUE, FALSE), octet (8-
bit), and

any (which can represent any primitive or constructed type).

Page | 188

Attributes
IDL interfaces can have attributes as well as methods. Attributes are like public class
fields in Java. Attributes may be defined as readonly where appropriate. The attributes
are private to CORBA objects, but for each attribute declared, a pair of accessor
methods is generated automatically by the IDL compiler, one to retrieve the value of
the attribute and the other to set
it. For readonly attributes, only the getter method is provided. For example, the
PersonList
interface defined in Figure 5.2 includes the following definition of an attribute: readonly
attribute string listname;

Inheritance
IDL interfaces may be extended. For example, if interface B extends interface A, this
means that
it may add new types, constants, exceptions, methods and attributes to those of A. An

extended
interface can redefine types, constants and exceptions, but is not allowed to redefine
methods. A
value of an extended type is valid as the value of a parameter or result of the parent

type. For
example, the type B is valid as the value of a parameter or result of the type A.

interface A { };
interface B: A{ };

interface C {};
interface Z : B, C {};

Page | 189

CORBA SERVICES

CORBA includes specifications for services that may be required by distributed objects. In
particular, the Naming Service is an essential addition to any ORB. The CORBA services
include the following:

 Naming Service:

 Event Service and Notification Service:

 Security service:

 Trading service:
In contrast to the Naming Service which allows CORBA objects to be located by name, the
Trading Service [OMG 2000a] allows them to be located by attribute – that is, it is a directory
service. Its database contains a mapping from service types and their associated attributes onto
remote object references of CORBA objects. The service type is a name, and each attribute is a

name-value pair. Clients make queries by specifying the type of service required, together with
other arguments specifying constraints on the values of attributes, and preferences for the order
in which to receive matching offers. Trading servers can form federations in which they not only
use their own databases but also perform queries on behalf of one anothers’ clients.

 Transaction service and concurrency control service:
The object transaction service [OMG 2003] allows distributed CORBA objects to participate in
either flat or nested transactions. The client specifies a transaction as a sequence of RMI calls,
which are introduced by begin and terminated by commit or rollback (abort). The ORB attaches
a transaction identifier to each remote invocation and deals with begin, commit and rollback
requests. Clients can also suspend and resume transactions. The transaction service carries out a
two-phase commit protocol. The concurrency control service [OMG 2000b] uses locks to apply
concurrency control to the access of CORBA objects. It may be used from within transactions or
independently.

 Persistent state service:
An persistent objects can be implemented by storing them in a passive form in a persistent object
store while they are not in use and activating them when they are needed. Although ORBs

activate CORBA objects with persistent object references, getting their implementations from the

Page | 190

a naming context is the scope within which a set of names applies – each of the names within a

context must be unique. A name can be associated with either an object reference for a CORBA

object in an application or with another context in the naming service.

The names used by the CORBA Naming Service are two-part names, called Name Components,
each of which consists of two strings, one for the name and the other for the kind of the object.
The kind field provides a single attribute that is intended for use by applications and may contain
any useful descriptive information; it is not interpreted by the Naming Service.

Although CORBA objects are given hierarchic names by the Naming Service, these names
cannot be expressed as pathnames like those of UNIX files.

implementation repository, they are not responsible for saving and restoring the state of
CORBA objects.

 Life cycle service
The life cycle service defines conventions for creating, deleting, copying and moving
CORBA
objects. It specifies how clients can use factories to create objects in particular locations,
allowing persistent storage to be used if required. It defines an interface that allows
clients to
delete CORBA objects or to move or copy them to a specified location.

CORBA Naming Service
The CORBA Naming Service is a sophisticated example of the binder described in
Chapter 5. It
allows names to be bound to the remote object references of CORBA objects within

naming
contexts.

Page | 191

CORBA Event Service
The CORBA Event Service specification defines interfaces allowing objects of interest,
called suppliers, to communicate notifications to subscribers, called consumers. The
notifications are communicated as arguments or results of ordinary synchronous
CORBA remote method invocations. Notifications may be propagated either by being
pushed by the supplier to the consumer or pulled by the consumer from the supplier.
In the first case, the consumers implement the PushConsumer interface which
includes a method push that takes any CORBA data type as argument. Consumers
register their remote object references with the suppliers. The supplier invokes the
push method, passing a notification as argument. In the second case, the supplier
implements the PullSupplier interface, which includes a method pull that receives any
CORBA data type as its return value. Suppliers register their remote object references
with the consumers. The consumers invoke the pull method and receive a notification
as result.

The notification itself is transmitted as an argument or result whose type is any, which
means that the objects exchanging notifications must have an agreement about the
contents of

notifications. Application programmers, however, may define their own IDL interfaces

with
notifications of any desired type.

Event channels are CORBA objects that may be used to allow multiple suppliers to
communicate with multiple consumers in an asynchronous manner. An event channel
acts as a

Page | 192

buffer between suppliers and consumers. It can also multicast the notifications to the
consumers. Communication via an event channel may use either the push or pull style.
The two styles may be mixed; for example, suppliers may push notifications to the
channel and consumers may pull notifications from it.

CORBA Notification Service
The CORBA Notification Service extends the CORBA Event Service, retaining all of its
features including event channels, event consumers and event suppliers. The event
service provides no support for filtering events or for specifying delivery requirements.
Without the use of filters, all the consumers attached to a channel have to receive the
same notifications as one another. And without the ability to specify delivery
requirements, all of the notifications sent via a channel are given the delivery guarantees
built into the implementation.
The notification service adds the following new facilities:

• Notifications may be defined as data structures. This is an enhancement of the limited
utility provided by notifications in the event service, whose type could only be either any

or a type specified by the application programmer.
• Event consumers may use filters that specify exactly which events they are interested

in. The filters may be attached to the proxies in a channel. The proxies will forward
notifications to event consumers according to constraints specified in filters in terms of

the contents of each notification.

• Event suppliers are provided with a means of discovering the events the consumers

are
interested in. This allows them to generate only those events that are required by the

consumers.

• Event consumers can discover the event types offered by the suppliers on a channel,
which enables them to subscribe to new events as they become available.

Page | 193

The following example illustrates the information in the body of a structured event:

• It is possible to configure the properties of a channel, a proxy or a particular event. These
properties include the reliability of event delivery, the priority of events, the ordering

required (for example, FIFO or by priority) and the policy for discarding stored events.
• An event type repository is an optional extra. It will provide access to the structure of
events, making it convenient to define filtering constraints.

A structured event consists of an event header and an event body. The following example
illustrates the contents of the header:

Filter objects are used by proxies in making decisions as to whether to forward each
notification. A filter is designed as a collection of constraints, each of which is a data
structure with two components:

• A list of data structures, each of which indicates an event type in terms of its domain
name and event type, for example, "home", "burglar alarm". The list includes all of the

event types to which the constraint should apply.

• A string containing a boolean expression involving the values of the event types

listed

above. For example:

("domain type" == "home" && "event type" == "burglar alarm") &&

("bell" != "ringing" !! "door" == "open")

CORBA Security Service
The CORBA Security Service [Blakley 1999, Baker 1997, OMG 2002b] includes the
following:

• Authentication of principals (users and servers); generating credentials for principals

(that
is, certificates stating their rights); delegation of credentials is supported

Page | 194

• Access control can be applied to CORBA objects when they receive remote method

invocations. Access rights may for example be specified in access control lists

(ACLs).

• Security of communication between clients and objects, protecting messages for
integrity and confidentiality.

• Auditing by servers of remote method invocations.
• Facilities for non-repudiation. When an object carries out a remote invocation on
behalf of a principal, the server creates and stores credentials that prove that the

invocation was done by that server on behalf of the requesting principal.

CORBA allows a variety of security policies to be specified according to requirements. A
message-protection policy states whether client or server (or both) must be authenticated, and
whether messages must be protected against disclosure and/or modification.

Access control takes into account that many applications have large numbers of users and
even larger numbers of objects, each with its own set of methods. Users are supplied with a

special type of credential called a privilege according to their roles.
Objects are grouped into domains. Each domain has a single access control policy

specifying the access rights for users with particular privileges to objects within that domain.
To allow for the unpredictable variety of methods, each method is classified in terms of one
of four generic methods (get, set, use and manage). Get methods just return parts of the object
state, set methods alter the object state, use methods cause the object to do some work, and
manage methods perform special functions that are not intended to be available for general
use. Since CORBA objects have a variety of different interfaces, the access rights must be
specified for each new interface in terms of the above generic methods.

In its simplest form, security may be applied in a manner that is transparent to
applications. It includes applying the required protection policy to remote method
invocations, together with auditing. The security service allows users to acquire their
individual credentials and privileges in return for supplying authentication data such as a
password.

